44 research outputs found

    Acute WNT signalling activation perturbs differentiation within the adult stomach and rapidly leads to tumour formation

    Get PDF
    A role for WNT signalling in gastric carcinogenesis has been suggested due to two major observations. First, patients with germline mutations in adenomatous polyposis coli (APC) are susceptible to stomach polyps and second, in gastric cancer, WNT activation confers a poor prognosis. However, the functional significance of deregulated WNT signalling in gastric homoeostasis and cancer is still unclear. In this study we have addressed this by investigating the immediate effects of WNT signalling activation within the stomach epithelium. We have specifically activated the WNT signalling pathway within the mouse adult gastric epithelium via deletion of either glycogen synthase kinase 3 (GSK3) or APC or via expression of a constitutively active Ξ²-catenin protein. WNT pathway deregulation dramatically affects stomach homoeostasis at very short latencies. In the corpus, there is rapid loss of parietal cells with fundic gland polyp (FGP) formation and adenomatous change, which are similar to those observed in familial adenomatous polyposis. In the antrum, adenomas occur from 4 days post-WNT activation. Taken together, these data show a pivotal role for WNT signalling in gastric homoeostasis, FGP formation and adenomagenesis. Loss of the parietal cell population and corresponding FGP formation, an early event in gastric carcinogenesis, as well as antral adenoma formation are immediate effects of nuclear Ξ²-catenin translocation and WNT target gene expression. Furthermore, our inducible murine model will permit a better understanding of the molecular changes required to drive tumourigenesis in the stomach

    From Sensor Data to Animal Behaviour: An Oystercatcher Example

    Get PDF
    Animal-borne sensors enable researchers to remotely track animals, their physiological state and body movements. Accelerometers, for example, have been used in several studies to measure body movement, posture, and energy expenditure, although predominantly in marine animals. In many studies, behaviour is often inferred from expert interpretation of sensor data and not validated with direct observations of the animal. The aim of this study was to derive models that could be used to classify oystercatcher (Haematopus ostralegus) behaviour based on sensor data. We measured the location, speed, and tri-axial acceleration of three oystercatchers using a flexible GPS tracking system and conducted simultaneous visual observations of the behaviour of these birds in their natural environment. We then used these data to develop three supervised classification trees of behaviour and finally applied one of the models to calculate time-activity budgets. The model based on accelerometer data developed to classify three behaviours (fly, terrestrial locomotion, and no movement) was much more accurate (cross-validation errorβ€Š=β€Š0.14) than the model based on GPS-speed alone (cross-validation errorβ€Š=β€Š0.35). The most parsimonious acceleration model designed to classify eight behaviours could distinguish five: fly, forage, body care, stand, and sit (cross-validation errorβ€Š=β€Š0.28); other behaviours that were observed, such as aggression or handling of prey, could not be distinguished. Model limitations and potential improvements are discussed. The workflow design presented in this study can facilitate model development, be adapted to a wide range of species, and together with the appropriate measurements, can foster the study of behaviour and habitat use of free living animals throughout their annual routine

    Nature meets nurture: molecular genetics of gastric cancer

    Get PDF
    The immensity of genes and molecules implicated in gastric carcinogenesis is overwhelming and the relevant importance of some of these molecules is too often unclear. This review serves to bring us up-to-date with the latest findings as well as to look at the larger picture in terms of how to tackle the problem of solving this multi-piece puzzle. In this review, the environmental nurturing of intestinal cancer is discussed, beginning with epidemiology (known causative factors for inducing molecular change), an update of H. pylori research, including the role of inflammation and stem cells in premalignant lesions. The role of E-cadherin in the nature (genotype) of diffuse gastric cancer is highlighted, and finally the ever growing discipline of SNP analysis (including IL1B) is discussed

    Rapid learning of shelter position in an intertidal fish, the shanny Lipophrys pholis L.

    No full text
    The homing ability of an intertidal fish, the shanny Lipophrys pholis, was investigated using two experiments that were based on the shanny's natural propensity to home to a refuge. A displacement experiment demonstrated that the fish were able to accurately locate the previous position of a refuge once the shelter itself had been removed so that it could not be used as a cue to directly signal the goal location. This shows that the shanny can encode information about its familiar surroundings into a spatial map and use this information to home. A second experiment in which the cues internal and external to the experimental tank were put in conflict with one another suggested that the shanny can encode cues that are both intra- and external-tank cues in its representation of space, but that there is individual variation in the type of cues that are used, or memorized. Β© 2008 The Authors

    Is the viceroy a batesian mimic?

    No full text

    Spatial scales of marine conservation management for breeding seabirds

    No full text
    Knowing the spatial scales at which effective management can be implemented is fundamental for conservation planning. This is especially important for mobile species, which can be exposed to threats across large areas, but the space use requirements of different species can vary to an extent that might render some management approaches inefficient. Here the space use patterns of seabirds were examined to provide guidance on whether conservation management approaches should be tailored for taxonomic groups with different movement characteristics. Seabird tracking data were synthesised from 5419 adult breeding individuals of 52 species in ten families that were collected in the Atlantic Ocean basin between 1998 and 2017. Two key aspects of spatial distribution were quantified, namely how far seabirds ranged from their colony, and to what extent individuals from the same colony used the same areas at sea. There was evidence for substantial differences in patterns of space-use among the ten studied seabird families, indicating that several alternative conservation management approaches are needed. Several species exhibited large foraging ranges and little aggregation at sea, indicating that area-based conservation solutions would have to be extremely large to adequately protect such species. The results highlight that short-ranging and aggregating species such as cormorants, auks, some penguins, and gulls would benefit from conservation approaches at relatively small spatial scales during their breeding season. However, improved regulation of fisheries, bycatch, pollution and other threats over large spatial scales will be needed for wide-ranging and dispersed species such as albatrosses, petrels, storm petrels and frigatebirds
    corecore