11 research outputs found

    Advances in short bowel syndrome: an updated review

    Full text link
    Short bowel syndrome (SBS) continues to be an important clinical problem due to its high mortality and morbidity as well as its devastating socioeconomic effects. The past 3 years have witnessed many advances in the investigation of this condition, with the aim of elucidating the cellular and molecular mechanisms of intestinal adaptation. Such information may provide opportunities to exploit various factors that act as growth agents for the remaining bowel mucosa and may suggest new therapeutic strategies to maintain gut integrity, eliminate dependence on total parenteral nutrition, and avoid the need for intestinal transplantation. This review summarizes current research on SBS over the last few years.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47168/1/383_2005_Article_1500.pd

    Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential

    Full text link
    The stem cells that maintain and repair the postnatal skeleton remain undefined. One model suggests that perisinusoidal mesenchymal stem cells (MSCs) give rise to osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, although the existence of these cells has not been proven through fate-mapping experiments. We demonstrate here that expression of the bone morphogenetic protein (BMP) antagonist gremlin 1 defines a population of osteochondroreticular (OCR) stem cells in the bone marrow. OCR stem cells self-renew and generate osteoblasts, chondrocytes, and reticular marrow stromal cells, but not adipocytes. OCR stem cells are concentrated within the metaphysis of long bones not in the perisinusoidal space and are needed for bone development, bone remodeling, and fracture repair. Grem1 expression also identifies intestinal reticular stem cells (iRSCs) that are cells of origin for the periepithelial intestinal mesenchymal sheath. Grem1 expression identifies distinct connective tissue stem cells in both the bone (OCR stem cells) and the intestine (iRSCs).http://deepblue.lib.umich.edu/bitstream/2027.42/175371/2/1-s2.0-S0092867414015190-main.pdfPublished versionDescription of 1-s2.0-S0092867414015190-main.pdf : Published versio

    Intestinal stem cells remain viable after prolonged tissue storage

    No full text
    Intestinal stem cells (ISCs) are responsible for renewal of the epithelium both during normal homeostasis and following injury. As such they have significant therapeutic potential. However, it is unknown whether ISCs can survive tissue storage. We hypothesized that, although the majority of epithelial cells may die, ISCs would remain viable for at least 24 h at 4°C. To explore this hypothesis, jejuni of C57Bl6/J or Lgr5-LacZ mice were removed and either processed immediately or placed in phosphate buffered saline (PBS) at 4°C. Delayed isolations of epithelia were performed after 24, 30, or 48 h storage. At the light microscope level, despite extensive apoptosis of villus epithelial cells, small intestinal crypts remained morphologically intact through 30 h and ISCs were identifiable via Lgr5-LacZ positivity. Electron microscopy showed that ISCs retain high integrity through 24 h. When assessed by flow cytometry, ISCs were more resistant to degeneration than the rest of the epithelium, including neighboring Paneth cells, with higher viability across all time points. Culture of isolated crypts showed no loss of capacity to form complex enteroids after 24 h tissue storage, with efficiencies after 7 days of culture remaining above 80%. By 30 h storage, efficiencies declined but budding capability was retained. We conclude that, with delay in isolation, ISCs remain viable and retain their proliferative capacity. In contrast, the remainder of the epithelium, including the Paneth cells, exhibits degeneration and programmed cell death. If these findings are recapitulated with human tissue, storage at 4°C may offer a valuable temporal window for harvest of crypts or ISCs for therapeutic application
    corecore