202 research outputs found

    Improving the development, monitoring and reporting of stroke rehabilitation research: consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable (SRRR)

    Get PDF
    Recent reviews have demonstrated that the quality of stroke rehabilitation research has continued to improve over the last four decades but despite this progress there are still many barriers in moving the field forward. Rigorous development, monitoring and complete reporting of interventions in stroke trials are essential in providing rehabilitation evidence that is robust, meaningful and implementable. An international partnership of stroke rehabilitation experts committed to develop consensus-based core recommendations with a remit of addressing the issues identified as limiting stroke rehabilitation research in the areas of developing, monitoring and reporting stroke rehabilitation interventions. Work exploring each of the three areas took place via multiple teleconferences and a two-day meeting in Philadelphia in May 2016. A total of 15 recommendations were made. To validate the need for the recommendations the group reviewed all stroke rehabilitation trials published in 2015 (n=182 papers). Our review highlighted that the majority of publications did not clearly describe how interventions were developed or monitored during the trial. In particular, under-reporting of the theoretical rationale for the intervention and the components of the intervention calls into question many interventions that have been evaluated for efficacy. More trials were found to have addressed the reporting of interventions recommendations than those related to development or monitoring. Nonetheless the majority of reporting recommendations were still not adequately described. To progress the field of stroke rehabilitation research and to ensure stroke patients receive optimal evidence based clinical care we urge the research community to endorse and adopt our recommendations

    MDM2 antagonist Nutlin-3a potentiates antitumour activity of cytotoxic drugs in sarcoma cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Frequent failure and severe side effects of current sarcoma therapy warrants new therapeutic approaches. The small-molecule MDM2 antagonist Nutlin-3a activates the p53 pathway and efficiently induces apoptosis in tumours with amplified <it>MDM2 </it>gene and overexpression of MDM2 protein. However, the majority of human sarcomas have normal level of MDM2 and the therapeutic potential of MDM2 antagonists in this group is still unclear. We have investigated if Nutlin-3a could be employed to augment the response to traditional therapy and/or reduce the genotoxic burden of chemotherapy.</p> <p>Methods</p> <p>A panel of sarcoma cell lines with different <it>TP53 </it>and <it>MDM2 </it>status were treated with Nutlin-3a combined with Doxorubicin, Methotrexate or Cisplatin, and their combination index determined.</p> <p>Results</p> <p>Clear synergism was observed when Doxorubicin and Nutlin-3a were combined in cell lines with wild-type <it>TP53 </it>and amplified <it>MDM2</it>, or with Methotrexate in both <it>MDM2 </it>normal and amplified sarcoma cell lines, allowing for up to tenfold reduction of cytotoxic drug dose. Interestingly, Nutlin-3a seemed to potentiate the effect of classical drugs as Doxorubicin and Cisplatin in cell lines with mutated <it>TP53</it>, but inhibited the effect of Methotrexate.</p> <p>Conclusion</p> <p>The use of Nutlin in combination with classical sarcoma chemotherapy shows promising preclinical potential, but since clear biomarkers are still lacking, clinical trials should be followed up with detailed tumour profiling.</p

    Circulating Strains of Human Respiratory Syncytial Virus in Central and South America

    Get PDF
    Human respiratory syncytial virus (HRSV) is a major cause of viral lower respiratory tract infections among infants and young children. HRSV strains vary genetically and antigenically and have been classified into two broad subgroups, A and B (HRSV-A and HRSV-B, respectively). To date, little is known about the circulating strains of HRSV in Latin America. We have evaluated the genetic diversity of 96 HRSV strains by sequencing a variable region of the G protein gene of isolates collected from 2007 to 2009 in Central and South America. Our results show the presence of the two antigenic subgroups of HRSV during this period with the majority belonging to the genotype HRSV-A2

    Second-to-Fourth Digit Ratio Has a Non-Monotonic Impact on Altruism

    Get PDF
    Gene-culture co-evolution emphasizes the joint role of culture and genes for the emergence of altruistic and cooperative behaviors and behavioral genetics provides estimates of their relative importance. However, these approaches cannot assess which biological traits determine altruism or how. We analyze the association between altruism in adults and the exposure to prenatal sex hormones, using the second-to-fourth digit ratio. We find an inverted U-shaped relation for left and right hands, which is very consistent for men and less systematic for women. Subjects with both high and low digit ratios give less than individuals with intermediate digit ratios. We repeat the exercise with the same subjects seven months later and find a similar association, even though subjects' behavior differs the second time they play the game. We then construct proxies of the median digit ratio in the population (using more than 1000 different subjects), show that subjects' altruism decreases with the distance of their ratio to these proxies. These results provide direct evidence that prenatal events contribute to the variation of altruistic behavior and that the exposure to fetal hormones is one of the relevant biological factors. In addition, the findings suggest that there might be an optimal level of exposure to these hormones from social perspective.Financial support from the Spanish Ministry of Science and Innovation (ECO2010{17049; ECO2009-09120), the Government of Andalusia Project for Excellence in Research (P07.SEJ.02547), the Government of the Basque Country (IT-223–07) and Fundacion Ramon Areces (I+D-2011)is gratefully acknowledged

    In vivo measures of cartilage deformation: patterns in healthy and osteoarthritic female knees using 3T MR imaging

    Get PDF
    ObjectiveTo explore and to compare the magnitude and spatial pattern of in vivo femorotibial cartilage deformation in healthy and in osteoarthritic (OA) knees.MethodsOne knee each in 30 women (age: 55 ± 6 years; BMI: 28 ± 2.4 kg/m(2); 11 healthy and 19 with radiographic femorotibial OA) was examined at 3Tesla using a coronal fat-suppressed gradient echo SPGR sequence. Regional and subregional femorotibial cartilage thickness was determined under unloaded and loaded conditions, with 50% body weight being applied to the knee in 20° knee flexion during imaging.ResultsCartilage became significantly (p &lt; 0.05) thinner during loading in the medial tibia (-2.7%), the weight-bearing medial femur (-4.1%) and in the lateral tibia (-1.8%), but not in the lateral femur (+0.1%). The magnitude of deformation in the medial tibia and femur tended to be greater in osteoarthritic knees than in healthy knees. The subregional pattern of cartilage deformation was similar for the different stages of radiographic OA.ConclusionOsteoarthritic cartilage tended to display greater deformation upon loading than healthy cartilage, suggesting that knee OA affects the mechanical properties of cartilage. The pattern of in vivo deformation indicated that cartilage loss in OA progression is mechanically driven

    Interleukin-32 Promotes Osteoclast Differentiation but Not Osteoclast Activation

    Get PDF
    Background: Interleukin-32 (IL-32) is a newly described cytokine produced after stimulation by IL-2 or IL-18 and IFN-γ. IL-32 has the typical properties of a pro-inflammatory mediator and although its role in rheumatoid arthritis has been recently reported its effect on the osteoclastogenesis process remains unclear. Methodology/principal findings: In the present study, we have shown that IL-32 was a potent modulator of osteoclastogenesis in vitro, whereby it promoted the differentiation of osteoclast precursors into TRAcP+ VNR+ multinucleated cells expressing specific osteoclast markers (up-regulation of NFATc1, OSCAR, Cathepsin K), but it was incapable of inducing the maturation of these multinucleated cells into bone-resorbing cells. The lack of bone resorption in IL-32-treated cultures could in part be explain by the lack of F-actin ring formation by the multinucleated cells generated. Moreover, when IL-32 was added to PBMC cultures maintained with soluble RANKL, although the number of newly generated osteoclast was increased, a significant decrease of the percentage of lacunar resorption was evident suggesting a possible inhibitory effect of this cytokine on osteoclast activation. To determine the mechanism by which IL-32 induces such response, we sought to determine the intracellular pathways activated and the release of soluble mediators in response to IL-32. Our results indicated that compared to RANKL, IL-32 induced a massive activation of ERK1/2 and Akt. Moreover, IL-32 was also capable of stimulating the release of IL-4 and IFN-γ, two known inhibitors of osteoclast formation and activation. Conclusions/significance: This is the first in vitro report on the complex role of IL-32 on osteoclast precursors. Further clarification on the exact role of IL-32 in vivo is required prior to the development of any potential therapeutic approach

    SV2 Mediates Entry of Tetanus Neurotoxin into Central Neurons

    Get PDF
    Tetanus neurotoxin causes the disease tetanus, which is characterized by rigid paralysis. The toxin acts by inhibiting the release of neurotransmitters from inhibitory neurons in the spinal cord that innervate motor neurons and is unique among the clostridial neurotoxins due to its ability to shuttle from the periphery to the central nervous system. Tetanus neurotoxin is thought to interact with a high affinity receptor complex that is composed of lipid and protein components; however, the identity of the protein receptor remains elusive. In the current study, we demonstrate that toxin binding, to dissociated hippocampal and spinal cord neurons, is greatly enhanced by driving synaptic vesicle exocytosis. Moreover, tetanus neurotoxin entry and subsequent cleavage of synaptobrevin II, the substrate for this toxin, was also dependent on synaptic vesicle recycling. Next, we identified the potential synaptic vesicle binding protein for the toxin and found that it corresponded to SV2; tetanus neurotoxin was unable to cleave synaptobrevin II in SV2 knockout neurons. Toxin entry into knockout neurons was rescued by infecting with viruses that express SV2A or SV2B. Tetanus toxin elicited the hyper excitability in dissociated spinal cord neurons - due to preferential loss of inhibitory transmission - that is characteristic of the disease. Surprisingly, in dissociated cortical cultures, low concentrations of the toxin preferentially acted on excitatory neurons. Further examination of the distribution of SV2A and SV2B in both spinal cord and cortical neurons revealed that SV2B is to a large extent localized to excitatory terminals, while SV2A is localized to inhibitory terminals. Therefore, the distinct effects of tetanus toxin on cortical and spinal cord neurons are not due to differential expression of SV2 isoforms. In summary, the findings reported here indicate that SV2A and SV2B mediate binding and entry of tetanus neurotoxin into central neurons
    corecore