501 research outputs found
Morphological evidence for geologically young thaw of ice on Mars: a review of recent studies using high-resolution imaging data
Liquid water is generally only meta-stable on Mars today; it quickly freezes, evaporates or boils in the cold, dry, thin atmosphere (surface pressure is about 200 times lower than on Earth). Nevertheless, there is morphological evidence that surface water was extensive in more ancient times, including the Noachian Epoch (~4.1 Ga to ~3.7 Ga bp), when large lakes existed and river-like channel networks were incised, and early in the Hesperian Epoch (~3.7 Ga to ~2.9 Ga bp), when megafloods carved enormous channels and smaller fluvial networks developed in association with crater-lakes. However, by the Amazonian Epoch (~3.0 Ga to present), most surface morphogenesis associated with liquid water had ceased, with long periods of water sequestration as ice in the near-surface and polar regions. However, inferences from observations using imaging data with sub-metre pixel sizes indicate that periglacial landscapes, involving morphogenesis associated with ground-ice and/or surface-ice thaw and liquid flows, has been active within the last few million years. In this paper, three such landform assemblages are described: a high-latitude assemblage comprising features interpreted to be sorted clastic stripes, circles and polygons, non-sorted polygonally patterned ground, fluvial gullies, and solifluction lobes; a mid-latitude assemblage comprising gullies, patterned ground, debris-covered glaciers and hillslope stripes; and an equatorial assemblage of linked basins, patterned ground, possible pingos, and channel-and-scarp features interpreted to be retrogressive thaw-slumps. Hypotheses to explain these observations are explored, including recent climate change, and hydrated minerals in the regolith ‘thawing’ to form liquid brines at very low temperatures. The use of terrestrial analogue field sites is also discussed
Grey and white matter correlates of recent and remote autobiographical memory retrieval:Insights from the dementias
The capacity to remember self-referential past events relies on the integrity of a distributed neural network. Controversy exists, however, regarding the involvement of specific brain structures for the retrieval of recently experienced versus more distant events. Here, we explored how characteristic patterns of atrophy in neurodegenerative disorders differentially disrupt remote versus recent autobiographical memory. Eleven behavioural-variant frontotemporal dementia, 10 semantic dementia, 15 Alzheimer's disease patients and 14 healthy older Controls completed the Autobiographical Interview. All patient groups displayed significant remote memory impairments relative to Controls. Similarly, recent period retrieval was significantly compromised in behavioural-variant frontotemporal dementia and Alzheimer's disease, yet semantic dementia patients scored in line with Controls. Voxel-based morphometry and diffusion tensor imaging analyses, for all participants combined, were conducted to investigate grey and white matter correlates of remote and recent autobiographical memory retrieval. Neural correlates common to both recent and remote time periods were identified, including the hippocampus, medial prefrontal, and frontopolar cortices, and the forceps minor and left hippocampal portion of the cingulum bundle. Regions exclusively implicated in each time period were also identified. The integrity of the anterior temporal cortices was related to the retrieval of remote memories, whereas the posterior cingulate cortex emerged as a structure significantly associated with recent autobiographical memory retrieval. This study represents the first investigation of the grey and white matter correlates of remote and recent autobiographical memory retrieval in neurodegenerative disorders. Our findings demonstrate the importance of core brain structures, including the medial prefrontal cortex and hippocampus, irrespective of time period, and point towards the contribution of discrete regions in mediating successful retrieval of distant versus recently experienced events
The semi-classical expansion and resurgence in gauge theories: new perturbative, instanton, bion, and renormalon effects
We study the dynamics of four dimensional gauge theories with adjoint
fermions for all gauge groups, both in perturbation theory and
non-perturbatively, by using circle compactification with periodic boundary
conditions for the fermions. There are new gauge phenomena. We show that, to
all orders in perturbation theory, many gauge groups are Higgsed by the gauge
holonomy around the circle to a product of both abelian and nonabelian gauge
group factors. Non-perturbatively there are monopole-instantons with fermion
zero modes and two types of monopole-anti-monopole molecules, called bions. One
type are "magnetic bions" which carry net magnetic charge and induce a mass gap
for gauge fluctuations. Another type are "neutral bions" which are magnetically
neutral, and their understanding requires a generalization of multi-instanton
techniques in quantum mechanics - which we refer to as the
Bogomolny-Zinn-Justin (BZJ) prescription - to compactified field theory. The
BZJ prescription applied to bion-anti-bion topological molecules predicts a
singularity on the positive real axis of the Borel plane (i.e., a divergence
from summing large orders in peturbation theory) which is of order N times
closer to the origin than the leading 4-d BPST instanton-anti-instanton
singularity, where N is the rank of the gauge group. The position of the
bion--anti-bion singularity is thus qualitatively similar to that of the 4-d IR
renormalon singularity, and we conjecture that they are continuously related as
the compactification radius is changed. By making use of transseries and
Ecalle's resurgence theory we argue that a non-perturbative continuum
definition of a class of field theories which admit semi-classical expansions
may be possible.Comment: 112 pages, 7 figures; v2: typos corrected, discussion of
supersymmetric models added at the end of section 8.1, reference adde
Protein crystals in adenovirus type 5-infected cells: requirements for intranuclear crystallogenesis, structural and functional analysis
Intranuclear crystalline inclusions have been observed in the nucleus of epithelial cells infected with Adenovirus serotype 5 (Ad5) at late steps of the virus life cycle. Using immuno-electron microscopy and confocal microscopy of cells infected with various Ad5 recombinants modified in their penton base or fiber domains, we found that these inclusions represented crystals of penton capsomers, the heteromeric capsid protein formed of penton base and fiber subunits. The occurrence of protein crystals within the nucleus of infected cells required the integrity of the fiber knob and part of the shaft domain. In the knob domain, the region overlapping residues 489–492 in the FG loop was found to be essential for crystal formation. In the shaft, a large deletion of repeats 4 to 16 had no detrimental effect on crystal inclusions, whereas deletion of repeats 8 to 21 abolished crystal formation without altering the level of fiber protein expression. This suggested a crucial role of the five penultimate repeats in the crystallisation process. Chimeric pentons made of Ad5 penton base and fiber domains from different serotypes were analyzed with respect to crystal formation. No crystal was found when fiber consisted of shaft (S) from Ad5 and knob (K) from Ad3 (heterotypic S5-K3 fiber), but occurred with homotypic S3K3 fiber. However, less regular crystals were observed with homotypic S35-K35 fiber. TB5, a monoclonal antibody directed against the Ad5 fiber knob was found by immunofluorescence microscopy to react with high efficiency with the intranuclear protein crystals in situ. Data obtained with Ad fiber mutants indicated that the absence of crystalline inclusions correlated with a lower infectivity and/or lower yields of virus progeny, suggesting that the protein crystals might be involved in virion assembly. Thus, we propose that TB5 staining of Ad-infected 293 cells can be used as a prognostic assay for the viability and productivity of fiber-modified Ad5 vectors
Efficient counting of k-mers in DNA sequences using a bloom filter
<p>Abstract</p> <p>Background</p> <p>Counting <it>k</it>-mers (substrings of length <it>k </it>in DNA sequence data) is an essential component of many methods in bioinformatics, including for genome and transcriptome assembly, for metagenomic sequencing, and for error correction of sequence reads. Although simple in principle, counting <it>k</it>-mers in large modern sequence data sets can easily overwhelm the memory capacity of standard computers. In current data sets, a large fraction-often more than 50%-of the storage capacity may be spent on storing <it>k</it>-mers that contain sequencing errors and which are typically observed only a single time in the data. These singleton <it>k</it>-mers are uninformative for many algorithms without some kind of error correction.</p> <p>Results</p> <p>We present a new method that identifies all the <it>k</it>-mers that occur more than once in a DNA sequence data set. Our method does this using a Bloom filter, a probabilistic data structure that stores all the observed <it>k</it>-mers implicitly in memory with greatly reduced memory requirements. We then make a second sweep through the data to provide exact counts of all nonunique <it>k</it>-mers. For example data sets, we report up to 50% savings in memory usage compared to current software, with modest costs in computational speed. This approach may reduce memory requirements for any algorithm that starts by counting <it>k</it>-mers in sequence data with errors.</p> <p>Conclusions</p> <p>A reference implementation for this methodology, BFCounter, is written in C++ and is GPL licensed. It is available for free download at <url>http://pritch.bsd.uchicago.edu/bfcounter.html</url></p
Locomotor changes in length and EMG activity of feline medial gastrocnemius muscle following paralysis of two synergists
The mechanism of the compensatory increase in electromyographic activity (EMG) of a cat ankle extensor during walking shortly after paralysis of its synergists is not fully understood. It is possible that due to greater ankle flexion in stance in this situation, muscle spindles are stretched to a greater extent and, thus, contribute to the EMG enhancement. However, also changes in force feedback and central drive may play a role. The aim of the present study was to investigate the short-term (1- to 2-week post-op) effects of lateral gastrocnemius (LG) and soleus (SO) denervation on muscle fascicle and muscle–tendon unit (MTU) length changes, as well as EMG activity of the intact medial gastrocnemius (MG) muscle in stance during overground walking on level (0%), downslope (−50%, presumably enhancing stretch of ankle extensors in stance) and upslope (+50%, enhancing load on ankle extensors) surfaces. Fascicle length was measured directly using sonomicrometry, and MTU length was calculated from joint kinematics. For each slope condition, LG-SO denervation resulted in an increase in MTU stretch and peak stretch velocity of the intact MG in early stance. MG muscle fascicle stretch and peak stretch velocity were also higher than before denervation in downslope walking. Denervation significantly decreased the magnitude of MG fascicle shortening and peak shortening velocity during early stance in level and upslope walking. MG EMG magnitude in the swing and stance phases was substantially greater after denervation, with a relatively greater increase during stance of level and upslope walking. These results suggest that the fascicle length patterns of MG muscle are significantly altered when two of its synergists are in a state of paralysis. Further, the compensatory increase in MG EMG is likely mediated by enhanced MG length feedback during downslope walking, enhanced feedback from load-sensitive receptors during upslope walking and enhanced central drive in all walking conditions
Individual working memory capacity is uniquely correlated with feature-based attention when combined with spatial attention
A growing literature suggests that working memory and attention are closely related constructs. Both involve the selection of task-relevant information, and both are characterized by capacity limits. Furthermore, studies using a variety of methodological approaches have demonstrated convergent working memory and attention-related processing at the individual, neural and behavioral level. Given the varieties of both constructs, the specific kinds of attention and WM must be considered. We find that individuals’ working memory capacity (WMC) uniquely interacts with feature-based attention when combined with spatial attention in a cuing paradigm (Posner, 1980). Our findings suggest a positive correlation between WM and feature-based attention only within the spotlight of spatial attention. This finding lends support to the controlled attention view of working memory by demonstrating that integrated feature-based expectancies are uniquely correlated with individual performance on a working memory task
Swordfish bill injury involving abdomen and vertebral column: case report and review
<p>Abstract</p> <p>Background</p> <p>Penetrating injuries of the abdomen and spinal canal that involve organic material of animal origin are extremely rare and derive from domestic and wild animal attacks or fish attacks.</p> <p>Case presentation</p> <p>In this case report we present the unique, as far as the literature is concerned, unprovoked woman's injury to the abdomen by a swordfish. There are only four cases of swordfish attacks on humans in the literature - one resulted to thoracic trauma, two to head trauma and one to knee trauma, one of which was fatal - none of which were unprovoked. Three victims were professional or amateur fishermen whereas in the last reported case the victim was a bather as in our case. Our case is the only case where organic debris of animal's origin remained in the spinal canal after penetrating trauma.</p> <p>Conclusions</p> <p>Although much has been written about the management of penetrating abdominal and spinal cord trauma, controversy remains about the optimal management. Moreover, there is little experience in the management of patients with such spinal injuries, due to the fact that such cases are extremely rare. In this report we focus on the patient's treatment with regard to abdominal and spinal trauma and present a review of the literature.</p
- …