18 research outputs found
On computational approaches for size-and-shape distributions from sedimentation velocity analytical ultracentrifugation
Sedimentation velocity analytical ultracentrifugation has become a very popular technique to study size distributions and interactions of macromolecules. Recently, a method termed two-dimensional spectrum analysis (2DSA) for the determination of size-and-shape distributions was described by Demeler and colleagues (Eur Biophys J 2009). It is based on novel ideas conceived for fitting the integral equations of the size-and-shape distribution to experimental data, illustrated with an example but provided without proof of the principle of the algorithm. In the present work, we examine the 2DSA algorithm by comparison with the mathematical reference frame and simple well-known numerical concepts for solving Fredholm integral equations, and test the key assumptions underlying the 2DSA method in an example application. While the 2DSA appears computationally excessively wasteful, key elements also appear to be in conflict with mathematical results. This raises doubts about the correctness of the results from 2DSA analysis
MicroMotility: State of the art, recent accomplishments and perspectives on the mathematical modeling of bio-motility at microscopic scales
Mathematical modeling and quantitative study of biological motility (in particular, of motility at microscopic scales) is producing new biophysical insight and is offering opportunities for new discoveries at the level of both fundamental science and technology. These range from the explanation of how complex behavior at the level of a single organism emerges from body architecture, to the understanding of collective phenomena in groups of organisms and tissues, and of how these forms of swarm intelligence can be controlled and harnessed in engineering applications, to the elucidation of processes of fundamental biological relevance at the cellular and sub-cellular level. In this paper, some of the most exciting new developments in the fields of locomotion of unicellular organisms, of soft adhesive locomotion across scales, of the study of pore translocation properties of knotted DNA, of the development of synthetic active solid sheets, of the mechanics of the unjamming transition in dense cell collectives, of the mechanics of cell sheet folding in volvocalean algae, and of the self-propulsion of topological defects in active matter are discussed. For each of these topics, we provide a brief state of the art, an example of recent achievements, and some directions for future research