13 research outputs found

    Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage

    Get PDF
    Bacteria in the 16S rRNA clade SAR86 are among the most abundant uncultivated constituents of microbial assemblages in the surface ocean for which little genomic information is currently available. Bioinformatic techniques were used to assemble two nearly complete genomes from marine metagenomes and single-cell sequencing provided two more partial genomes. Recruitment of metagenomic data shows that these SAR86 genomes substantially increase our knowledge of non-photosynthetic bacteria in the surface ocean. Phylogenomic analyses establish SAR86 as a basal and divergent lineage of γ-proteobacteria, and the individual genomes display a temperature-dependent distribution. Modestly sized at 1.25–1.7 Mbp, the SAR86 genomes lack several pathways for amino-acid and vitamin synthesis as well as sulfate reduction, trends commonly observed in other abundant marine microbes. SAR86 appears to be an aerobic chemoheterotroph with the potential for proteorhodopsin-based ATP generation, though the apparent lack of a retinal biosynthesis pathway may require it to scavenge exogenously-derived pigments to utilize proteorhodopsin. The genomes contain an expanded capacity for the degradation of lipids and carbohydrates acquired using a wealth of tonB-dependent outer membrane receptors. Like the abundant planktonic marine bacterial clade SAR11, SAR86 exhibits metabolic streamlining, but also a distinct carbon compound specialization, possibly avoiding competition

    Genetic diversity within mer genes directly amplified from communities of noncultivated soil and sediment bacteria

    No full text
    Individual merRT delta P regions were amplified from DNA directly isolated from soil and sediment samples using consensus primers derived from the conserved mer sequences of Tn501, Tn21 and pMER419. Soil and sediment samples were taken from four sites in the British Isles; one 'pristine' (SB) and three polluted (SO, SE, T2) with respect to mercury. The sizes of the PCR products amplified (approximately 1 kb) were consistent with their generation from mer determinants related to the archetypal elements found in Gram negative bacteria. Forty-five individual clones of sequences obtained from these four sites were isolated which hybridized (> 70 homology) to a merRT delta P probe from Tn501. The diversity of these amplified mer genes was analysed using Restriction Fragment Length Polymorphism (RFLP) profiling. Fourteen RFLP classes were distinguished, 12 of which proved to be novel and only two of which had been identified in an earlier study of 40 Gram negative mercury resistant bacteria cultured from the same four sites. UPGMA analysis was used to examine the relationships between the 22 classes of determinant identified. The T2 site, which has the longest history of mercury exposure, was found to have the greatest level of diversity in terms of numbers of classes of determinant, while the SO site, which had the highest mercury levels showed relatively low variation. Variation of mer genes within and between the sequences from cultivated bacteria and from total bacterial DNA shows clearly that analysing only sequences from cultivated organisms results in a gross underestimation of genetic variation
    corecore