6,663 research outputs found

    Finite size and finite temperature studies of the osp(1∣2)osp(1|2) spin chain

    Full text link
    We study a quantum spin chain invariant by the superalgebra osp(1∣2)osp(1|2). We derived non-linear integral equations for the row-to-row transfer matrix eigenvalue in order to analyze its finite size scaling behaviour and we determined its central charge. We have also studied the thermodynamical properties of the obtained spin chain via the non-linear integral equations for the quantum transfer matrix eigenvalue. We numerically solved these NLIE and evaluated the specific heat and magnetic susceptibility. The analytical low temperature analysis was performed providing a different value for the effective central charge. The computed values are in agreement with the numerical predictions in the literature.Comment: 26 pages, 2 figure

    Starbursts and black hole masses in X-shaped radio galaxies: Signatures of a merger event?

    Full text link
    We present new spectroscopic identifications of 12 X-shaped radio galaxies and use the spectral data to derive starburst histories and masses of the nuclear supermassive black holes in these galaxies. The observations were done with the 2.1-m telescope of the Observatorio Astron\'omico Nacional at San Pedro M\'artir, M\'exico. The new spectroscopic results extend the sample of X-shaped radio galaxies studied with optical spectroscopy. We show that the combined sample of the X-shaped radio galaxies has statistically higher black-hole masses and older episodes of star formation than a control sample of canonical double-lobed radio sources with similar redshifts and luminosities. The data reveal enhanced star-formation activity in the X-shaped sample on the timescales expected in galactic mergers. We discuss the results obtained in the framework of the merger scenario.Comment: 9 pages, 10 figures, accepted for publication in Astronomy & Astrophysic

    Tunneling effects on impurity spectral function in coupled asymmetric quantum wires

    Full text link
    The impurity spectral function is studied in coupled double quantum wires at finite temperatures. Simple anisotropy in the confinement direction of the wires leads to finite non-diagonal elements of the impurity spectral function matrix. These non-diagonal elements are responsible for tunneling effects and result in pronounced extra peak in the impurity spectral function up to temperatures as high as 20 K.Comment: Accepted in Phys. Rev.
    • …
    corecore