353 research outputs found
Source apportionment of submicron organic aerosol at an urban background and a road site in Barcelona (Spain) during SAPUSS
This study investigates the contribution of potential sources to the submicron (PM<sub>1</sub>) organic aerosol (OA) simultaneously detected at an urban background (UB) and a road site (RS) in Barcelona during the 30 days of the intensive field campaign of SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies, September–October 2010). A total of 103 filters at 12 h sampling time resolution were collected at both sites. Thirty-six neutral and polar organic compounds of known emission sources and photo-chemical transformation processes were analyzed by gas chromatography–mass spectrometry (GC-MS). The concentrations of the trace chemical compounds analyzed are herein presented and discussed. <br><br> Additionally, OA source apportionment was performed by multivariate curve resolution–alternating least squares (MCR-ALS) and six OA components were identified at both sites: two were of primary anthropogenic OA origin and three of secondary OA origin, while a sixth one was not clearly defined. Primary organics from emissions of local anthropogenic activities (urban primary organic aerosol, or POA Urban), mainly traffic emissions but also cigarette smoke, contributed 43% (1.5 μg OC m<sup>−3</sup>) and 18% (0.4 μg OC m<sup>−3</sup>) to OA at RS and UB, respectively. A secondary primary source – biomass burning (BBOA) – was found in all the samples (average values 7% RS; 12% UB; 0.3 μg OC m<sup>−3</sup>), but this component was substantially contributing to OA only when the sampling sites were under influence of regional air mass circulation (REG.). Three secondary organic aerosol (SOA) components (describing overall 60% of the variance) were observed in the urban ambient PM<sub>1</sub>. Products of isoprene oxidation (SOA ISO) – i.e. 2-methylglyceric acid, C<sub>5</sub> alkene triols and 2-methyltetrols – showed the highest abundance at both sites when the city was under influence of inland air masses. The overall concentrations of SOA ISO were similar at both sites (0.4 and 0.3 μg m<sup>−3</sup>, or 16% and 7%, at UB and RS, respectively). By contrast, a SOA biogenic component attributed to α-pinene oxidation (SOA BIO PIN) presented average concentrations of 0.5 μg m<sup>−3</sup> at UB (24% of OA) and 0.2 μg m<sup>−3</sup> at RS (7%), respectively, suggesting that this SOA component did not impact the two monitoring sites at the same level. A clear anti-correlation was observed between SOA ISO and SOA PIN during nucleation days, surprisingly suggesting that some of the growth of urban freshly nucleating particles may be driven by biogenic α-pinene oxidation products but inhibited by isoprene organic compounds. A third SOA component was formed by a mixture of aged anthropogenic and biogenic secondary organic compounds (SOA Aged) that accumulated under stagnant atmospheric conditions, contributing for 12% to OA at RS (0.4 μg OC m<sup>−3</sup>) and for 18% at UB (0.4 μg OC m<sup>−3</sup>). <br><br> A sixth component, formed by C<sub>7</sub>–C<sub>9</sub> dicarboxylic acids and detected especially during daytime, was called "urban oxygenated organic aerosol" (OOA Urban) due to its high abundance at urban RS (23%; 0.8 μg OCm<sup>−3</sup>) vs. UB (10%; 0.2 μg OCm<sup>−3</sup>), with a well-defined daytime maximum. This temporal trend and geographical differentiation suggests that local anthropogenic sources were determining this component. However, the changes of these organic molecules were also influenced by the air mass trajectories, indicating that atmospheric conditions have an influence on this component, although the specific origin on this component remains unclear. It points to a secondary organic component driven by primary urban sources including cooking and traffic (mainly gasoline) activities
Multivariate curve resolution of pH gradient flow injection mixture analysis with correction of the Schlieren effect
Multivariate curve resolution using alternating least squares (MCR-ALS) was used to quantify ascorbic (AA) and acetylsalicylic (ASA) acids in four pharmaceutical samples using a flow injection analysis (FIA) system with pH gradient and a diode array (DAD) spectrometer as a detector. Four different pharmaceutical drugs were analyzed, giving a data array of dimensions 51 x 291 x 61, corresponding respectively to number of samples, FIA times and spectral wavelengths. MCR-ALS was applied to these large data sets using different constraints to have optimal resolution and optimal quantitative estimations of the two analytes (AA and ASA). Since both analytes give an acid-basic pair of species contributing to the UV recorded signal, at least four components sholuld be proposed to model AA and ASA in synthetic mixture samples. Moreover, one additional component was needed to resolve accurately the Schlieren effect and another additional component was also needed to model the presence of possible interferences (like caffeine) in the commercial drugs tablets, giving therefore a total number of 6 independent components needed. The best quantification relative errors were around 2% compared to the reference values obtained by HPLC and by the oxidation-reduction titrimetric method, for ASA and AA respectively. In this work, the application of MCR-ALS allowed for the first time the full resolution of the FIA diffusion profile due to the Schlieren effect as an independent signal contribution, suggesting that the proposed MCR-ALS method allows for its accurate correction in FIA-DAD systems.133677478
Multicomponent Determination of Chlorinated Hydrocarbons Using a Reaction-Based Chemical Sensor. 3. Medium-Rank Second-Order Calibration with Restricted Tucker Models
The calibration of a chemical sensor for chlorinated hydrocarbon analytes based on the Fujiwara reaction is described. This sensor generates a particular type of data: medium-rank second-order data. With this type of data it is possible to calibrate the sensor in such a way that quantitation for the analytes in the presence of unknown interferents is possible. The calibration method developed is a new approach based on so-called restricted Tucker models that utilize all available chemical informatio
Prostate Diffusion Weighted-Magnetic Resonance Image analysis using Multivariate Curve Resolution methods
[EN] Multivariate Curve Resolution (MCR) has been applied on prostate Diffusion Weighted-Magnetic Resonance Images (DW-MRI). Different physiological-based modeling approaches of the diffusion process have been submitted to validation by sequentially incorporating prior knowledge on the MCR constraints. Results validate the biexponential diffusion modeling approach and show the capability of the MCR models to find, characterize and locate the behaviors related to the presence of an early prostate tumor.The authors want to thank prof. Anna de Juan for her comments and help in using the software for this study. This research work was partially supported by the Spanish Ministry of Economy and Competitiveness under the project DPI 2011-28112-004-02.Aguado Sarrió, E.; Prats-Montalbán, JM.; Sanz Requena, R.; Marti Bonmati, L.; Alberich Bayarri, Á.; Ferrer Riquelme, AJ. (2015). Prostate Diffusion Weighted-Magnetic Resonance Image analysis using Multivariate Curve Resolution methods. Chemometrics and Intelligent Laboratory Systems. 140:43-48. https://doi.org/10.1016/j.chemolab.2014.11.002S434814
Effect of low doses of actinomycin D on neuroblastoma cell lines
Neuroblastoma is a malignant embryonal tumor occurring in young children, consisting of undifferentiated neuroectodermal cells derived from the neural crest. Current therapies for high-risk neuroblastoma are insufficient, resulting in high mortality rates and high incidence of relapse. With the intent to find new therapies for neuroblastomas, we investigated the efficacy of low-doses of actinomycin D, which at low concentrations preferentially inhibit RNA polymerase I-dependent rRNA trasncription and therefore, ribosome biogenesis. Neuroblastoma cell lines with different p53 genetic background were employed to determine the response on cell viability and apoptosis of low-dose of actinomycin D. Subcutaneously-implanted SK-N-JD derived neuroblastoma tumors were used to assess the effect of low-doses of actinomycin D on tumor formation. Low-dose actinomycin D treatment causes a reduction of cell viability in neuroblastoma cell lines and that this effect is stronger in cells that are wild-type for p53. MYCN overexpression contributes to enhance this effect, confirming the importance of this oncogene in ribosome biogenesis. In the wild-type SK-N-JD cell line, apoptosis was the major mechanism responsible for the reduction in viability and we demonstrate that treatment with the MDM2 inhibitor Nutlin-3, had a similar effect to that of actinomycin D. Apoptosis was also detected in p53 −/− deficient LA1-55n cells treated with actinomycin D, however, only a small recovery of cell viability was found when apoptosis was inhibited by a pan-caspase inhibitor, suggesting that the treatment could activate an apoptosis-independent cell death pathway in these cells. We also determined whether actinomycin D could increase the efficacy of the histone deacetylase inhibitor, SAHA, which is in being used in neuroblastoma clinical trials. We show that actinomycin D synergizes with SAHA in neuroblastoma cell lines. Moreover, on subcutaneously-implanted neuroblastoma tumors derived from SK-N-JD cells, actinomycin D led to tumor regression, an effect enhanced in combination with SAHA. The results presented in this work demonstrate that actinomycin D, at low concentrations, inhibits proliferation and induces cell death in vitro, as well as tumor regression in vivo. From this study, we propose that use of ribosome biogenesis inhibitors should be clinically considered as a potential therapy to treat neuroblastomas. The online version of this article (doi:10.1186/s12943-015-0489-8) contains supplementary material, which is available to authorized users
The Poopó Polymetallic Epithermal Deposit, Bolivia: Mineralogy, Genetic Constraints, and Distribution of Critical Elements
The tin-rich polymetallic epithermal deposit of Poopó, of plausible Late Miocene age, is part of the Bolivian Tin Belt. As an epithermal low sulfidation mineralisation, it represents a typological end-member within the "family" of Bolivian tin deposits. The emplacement of the mineralisation was controlled by the regional fault zone that constitutes the geological border between the Bolivian Altiplano and the Eastern Andes Cordillera. In addition to Sn and Ag, its economic interest resides in its potential in critical elements as In, Ga and Ge. This paper provides the first systematic characterisation of the complex mineralogy and mineral chemistry of the Poopó deposit with the twofold aim of identifying the mineral carriers of critical elements and endeavouring to ascertain plausible metallogenic processes for the formation of this deposit, by means of a multi-methodological approach. The poor development of hydrothermal alteration assemblage, the abundance of sulphosalts and the replacement of löllingite and pyrrhotite by arsenopyrite and pyrite, respectively, indicate that this deposit is ascribed to the low-sulphidation subtype of epithermal deposits, with excursions into higher states of sulphidation. Additionally, the occurrence of pyrophyllite and topaz has been interpreted as the result of discrete pulses of high-sulphidation magmatic fluids. The δ34SVCDT range in sulphides (−5.9 to −2.8 ) is compatible either with: (i) hybrid sulphur sources (i.e., magmatic and sedimentary or metasedimentary); or (ii) a sole magmatic source involving magmas that derived from partial melting of sedimentary rocks or underwent crustal assimilation. In their overall contents in critical elements (In, Ga and Ge), the key minerals in the Poopó deposit, based on their abundance in the deposit and compositions, are rhodostannite, franckeite, cassiterite, stannite and, less importantly, teallite, sphalerite and jamesonite
The Poopó polymetallic epithermal deposit, Bolivia: mineralogy, genetic constraints, and distribution of critical elements
The tin-rich polymetallic epithermal deposit of Poopó, of plausible Late Miocene age, is part of the Bolivian Tin Belt. As an epithermal low sulfidation mineralisation, it represents a typological end-member within the “family” of Bolivian tin deposits. The emplacement of the mineralisation was controlled by the regional fault zone that constitutes the geological border between the Bolivian Altiplano and the Eastern Andes Cordillera. In addition to Sn and Ag, its economic interest resides in its potential in critical elements as In, Ga and Ge. This paper provides the first systematic characterisation of the complex mineralogy and mineral chemistry of the Poopó deposit with the twofold aim of identifying the mineral carriers of critical elements and endeavouring to ascertain plausible metallogenic processes for the formation of this deposit, by means of a multi-methodological approach. The poor development of hydrothermal alteration assemblage, the abundance of sulphosalts and the replacement of löllingite and pyrrhotite by arsenopyrite and pyrite, respectively, indicate that this deposit is ascribed to the low-sulphidation subtype of epithermal deposits, with excursions into higher states of sulphidation. Additionally, the occurrence of pyrophyllite and topaz has been interpreted as the result of discrete pulses of high-sulphidation magmatic fluids. The d34SVCDT range in sulphides (-5.9 to -2.8‰) is compatible either with: (i) hybrid sulphur sources (i.e., magmatic and sedimentary or metasedimentary); or (ii) a sole magmatic source involving magmas that derived from partial melting of sedimentary rocks or underwent crustal assimilation. In their overall contents in critical elements (In, Ga and Ge), the key minerals in the Poopó deposit, based on their abundance in the deposit and compositions, are rhodostannite, franckeite, cassiterite, stannite and, less importantly, teallite, sphalerite and jamesonite.Peer ReviewedPostprint (published version
- …