104 research outputs found

    Magnetic properties in the inhomogeneous chiral phase

    Get PDF
    We investigate the magnetic properties of quark matter in the inhomogeneous chiral phase, where both scalar and pseudoscalar condensates spatially modulate. The energy spectrum of the lowest Landau level becomes asymmetric about zero in the external magnetic field, and gives rise to the remarkably magnetic properties: quark matter has a spontaneous magnetization, while the magnetic susceptibility does not diverge on the critical point.Comment: 6 pages, 3 figures, talk given in Excited QCD 2016, Mar. 6-12, 2016, Costa da Caparica, Portuga

    Hybrid chiral condensate in the external magnetic field

    Get PDF
    We study the phase diagram of the Nambu-Jona-Lasinio model in the external magnetic field within the mean-field approximation, taking into account the inhomogeneous chiral condensate. It is shown that there appears a new type of the chiral condensate, endowed with two features of real kink crystal and dual chiral density wave, in the magnetic field. We also show that there are first order phase transitions between different inhomogeneous phases in the presence of magnetic field.Comment: 14 pages, 24 figure

    Two-dimensional fluid viscosity measurement in microchannel flow using fluorescence polarization imaging

    Get PDF
    This study describes the development of a noncontact and two-dimensional fluid viscosity measurement technique based on fluorescence polarization microscopy. This technique exploits fluorescence depolarization due to rotational Brownian motion of fluorophores and determines fluid viscosity in microchannel flow by measuring steady-state fluorescence polarization. The main advantage of the technique is that planar distributions of fluid viscosity can be visualized by noncontact optical measurement, while commonly-used mechanical viscometers measure the viscosity of bulk liquids. Moreover, steady-state polarization measurements are realized using a simpler experimental setup compared to other noncontact techniques such as time-resolved fluorescence lifetime/polarization measurements. The relationship between the fluid viscosity (μ) and the fluorescence polarization degree () was experimentally obtained using casein molecules labeled with fluorescein isothiocyanate as a fluorescent probe. The fluid viscosity was controlled within the range of 0.7-3.0 mPa s, which is the range often encountered in biological materials, by mixing sucrose or glucose with the solution. The fluid temperature was maintained uniform at 30 °C during the measurement. The calibration result showed that 1/ linearly increased with 1/μ which qualitatively agreed well with the theoretical prediction. The measurement uncertainty was 7.5%-9.5% based on the slope of the calibration curve. The viscosity gradient generated by the mass diffusion between the two solutions co-flowing in the Y-shaped microchannel was clearly visualized under uniform temperature conditions by applying the calibration curve. Finally, the influence of the temperature change on was experimentally evaluated. The results supported the applicability of the present technique for visualization of the viscosity distribution induced by temperature change. These results confirmed the feasibility of the present technique for analyzing microscale viscosity fields associated with mass transport or temperature change

    Hydrogen-bond-assisted isotactic-specific radical polymerization of N-vinyl-2-pyrrolidone with tartrate additives in toluene at low temperatures : high-resolution 1H NMR analysis

    Get PDF
    A diethyl L-tartrate (L-EtTar)-assisted radical polymerization of N-vinyl-2-pyrrolidone has been developed as the first reported example of the synthesis of isotactic-rich poly(N-vinyl-2-pyrrolidone) (PVP). The addition of L-EtTar in toluene at temperatures of –40°C and lower led to a significant increase in the polymer yield by one order of magnitude compared with the reaction in the absence of L-EtTar. Decreasing the polymerization temperature led to increases in the isotacticity of the PVP, with the mm triad reaching 66.4% at −93 °C. 1H NMR measurement at 920 MHz was conducted to establish a reliable strategy for quantifying the triad tacticities. High-temperature NMR measurements at 250 °C were performed using a specially-designed NMR probe, which led to dramatic narrowing of the 1H line width

    Na依存性PiトランスポーターNpt2cは、KlothoノックアウトマウスPi恒常性において成長期と成熟期では異なる作用を有する

    Get PDF
    SLC34A3/NPT2c/NaPi-2c/Npt2c is a growth-related NaPi cotransporter that mediates the uptake of renal sodium-dependent phosphate (Pi). Mutation of human NPT2c causes hereditary hypophosphatemic rickets with hypercalciuria. Mice with Npt2c knockout, however, exhibit normal Pi metabolism. To investigate the role of Npt2c in Pi homeostasis, we generated α-klotho−/−/Npt2c−/− (KL2cDKO) mice and analyzed Pi homeostasis. α-Klotho−/− (KLKO) mice exhibit hyperphosphatemia and markedly increased kidney Npt2c protein levels. Genetic disruption of Npt2c extended the lifespan of KLKO mice similar to that of α-Klotho−/−/Npt2a−/− mice. Adult KL2cDKO mice had hyperphosphatemia, but analysis of Pi metabolism revealed significantly decreased intestinal and renal Pi (re)absorption compared with KLKO mice. The 1,25-dihydroxy vitamin D3 concentration was not reduced in KL2cDKO mice compared with that in KLKO mice. The KL2cDKO mice had less severe soft tissue and vascular calcification compared with KLKO mice. Juvenile KL2cDKO mice had significantly reduced plasma Pi levels, but Pi metabolism was not changed. In Npt2cKO mice, plasma Pi levels began to decrease around the age of 15 days and significant hypophosphatemia developed within 21 days. The findings of the present study suggest that Npt2c contributes to regulating plasma Pi levels in the juvenile stage and affects Pi retention in the soft and vascular tissues in KLKO mice

    Cold start cycling durability of fuel cell stacks for commercial automotive applications

    Get PDF
    System durability is crucial for the successful commercialization of polymer electrolyte fuel cells (PEFCs) in fuel cell electric vehicles (FCEVs). Besides conventional electrochemical cycling durability during long-term operation, the effect of operation in cold climates must also be considered. Ice formation during start up in sub-zero conditions may result in damage to the electrocatalyst layer and the polymer electrolyte membrane (PEM). Here, we conduct accelerated cold start cycling tests on prototype fuel cell stacks intended for incorporation into commercial FCEVs. The effect of this on the stack performance is evaluated, the resulting mechanical damage is investigated, and degradation mechanisms are proposed. Overall, only a small voltage drop is observed after the durability tests, only minor damage occurs in the electrocatalyst layer, and no increase in gas crossover is observed. This indicates that these prototype fuel cell stacks successfully meet the cold start durability targets for automotive applications in FCEVs

    Accelerated durability testing of fuel cell stacks for commercial automotive applications : a case study

    Get PDF
    System durability is crucially important for the successful commercialization of fuel cell electric vehicles (FCEVs). Conventional accelerated durability testing protocols employ relatively high voltage to hasten carbon corrosion and/or platinum catalyst degradation. However, high voltages are strictly avoided in commercialized FCEVs such as the Toyota MIRAI to minimize these degradation modes. As such, conventional durability tests are not representative of real-world FCEV driving conditions. Here, modified start-stop and load cycle durability tests are conducted on prototype fuel cell stacks intended for incorporation into commercial FCEVs. Polarization curves are evaluated at beginning of test (BOT) and end of test (EOT), and the degradation mechanisms are elucidated by separating the overvoltages at both 0.2 and 2.2 A cm-2. Using our modified durability protocols with a maximum cell voltage of 0.9 V, the prototype fuel cell stacks easily meet durability targets for automotive applications, corresponding to 15-year operation and 200,000 km driving range. These findings have been applied successfully in the development of new fuel cell systems for FCEVs, in particular the second-generation Toyota MIRAI

    Extreme deformability of insect cell membranes is governed by phospholipid scrambling

    Get PDF
    昆虫の細胞は柔らかい! --細胞膜を柔らかくするタンパク質を発見--. 京都大学プレスリリース. 2021-06-09.Organization of dynamic cellular structure is crucial for a variety of cellular functions. In this study, we report that Drosophila and Aedes have highly elastic cell membranes with extremely low membrane tension and high resistance to mechanical stress. In contrast to other eukaryotic cells, phospholipids are symmetrically distributed between the bilayer leaflets of the insect plasma membrane, where phospholipid scramblase (XKR) that disrupts the lipid asymmetry is constitutively active. We also demonstrate that XKR-facilitated phospholipid scrambling promotes the deformability of cell membranes by regulating both actin cortex dynamics and mechanical properties of the phospholipid bilayer. Moreover, XKR-mediated construction of elastic cell membranes is essential for hemocyte circulation in the Drosophila cardiovascular system. Deformation of mammalian cells is also enhanced by the expression of Aedes XKR, and thus phospholipid scrambling may contribute to formation of highly deformable cell membranes in a variety of living eukaryotic cells

    A Role of Intestinal Alkaline Phosphatase 3 (Akp3) in Inorganic Phosphate Homeostasis

    Get PDF
    Background/Aims: Hyperphosphatemia is a serious complication of late-stage chronic kidney disease (CKD). Intestinal inorganic phosphate (Pi) handling plays an important role in Pi homeostasis in CKD. We investigated whether intestinal alkaline phosphatase 3 (Akp3), the enzyme that hydrolyzes dietary Pi compounds, is a target for the treatment of hyperphosphatemia in CKD. Methods: We investigated Pi homeostasis in Akp3 knockout mice (Akp3-/-). We also studied the progression of renal failure in an Akp3-/- mouse adenine treated renal failure model. Plasma, fecal, and urinary Pi and Ca concentration were measured with commercially available kit, and plasma fibroblast growth factor 23, parathyroid hormone, and 1,25(OH)2D3 concentration were measured with ELISA. Brush border membrane vesicles were prepared from mouse intestine using the Ca2+ precipitation method and used for Pi transport activity and alkaline phosphatase activity. In vivo intestinal Pi absorption was measured with oral 32P administration. Results: Akp3-/- mice exhibited reduced intestinal type II sodium-dependent Pi transporter (Npt2b) protein levels and Na-dependent Pi co-transport activity. In addition, plasma active vitamin D levels were significantly increased in Akp3-/- mice compared with wild-type animals. In the adenine-induced renal failure model, Akp3 gene deletion suppressed hyperphosphatemia. Conclusion: The present findings indicate that intestinal Akp3 deletion affects Na+-dependent Pi transport in the small intestine. In the adenine-induced renal failure model, Akp3 is predicted to be a factor contributing to suppression of the plasma Pi concentration

    小腸のリン恒常性における小腸型アルカリホスファターゼ(Akp3)の役割について

    Get PDF
    Background/Aims: Hyperphosphatemia is a serious complication of late-stage chronic kidney disease (CKD). Intestinal inorganic phosphate (Pi) handling plays an important role in Pi homeostasis in CKD. We investigated whether intestinal alkaline phosphatase 3 (Akp3), the enzyme that hydrolyzes dietary Pi compounds, is a target for the treatment of hyperphosphatemia in CKD. Methods: We investigated Pi homeostasis in Akp3 knockout mice (Akp3-/-). We also studied the progression of renal failure in an Akp3-/- mouse adenine treated renal failure model. Plasma, fecal, and urinary Pi and Ca concentration were measured with commercially available kit, and plasma fibroblast growth factor 23, parathyroid hormone, and 1,25(OH)2D3 concentration were measured with ELISA. Brush border membrane vesicles were prepared from mouse intestine using the Ca2+ precipitation method and used for Pi transport activity and alkaline phosphatase activity. In vivo intestinal Pi absorption was measured with oral 32P administration. Results: Akp3-/- mice exhibited reduced intestinal type II sodium-dependent Pi transporter (Npt2b) protein levels and Na-dependent Pi co-transport activity. In addition, plasma active vitamin D levels were significantly increased in Akp3-/- mice compared with wild-type animals. In the adenine-induced renal failure model, Akp3 gene deletion suppressed hyperphosphatemia. Conclusion: The present findings indicate that intestinal Akp3 deletion affects Na+-dependent Pi transport in the small intestine. In the adenine-induced renal failure model, Akp3 is predicted to be a factor contributing to suppression of the plasma Pi concentration
    corecore