101 research outputs found

    Tumors in invertebrates

    Get PDF
    Tumors are ectopic masses of tissue formed by due to an abnormal cell proliferation. In this review tumors of several invertebrate species are examined. The description of tumors in invertebrates may be a difficult task, because the pathologists are usually inexperienced with invertebrate tissues, and the experts in invertebrate biology are not familiar with the description of tumors. As a consequence, the terminology used in defining the tumor type is related to that used in mammalian pathology, which can create misunderstandings in some occasions

    Cellular mechanisms and second messengers: relevance to the psychopharmacology of bipolar disorders

    Get PDF
    The discovery of lithium's efficacy as a mood-stabilizing agent revolutionized the treatment of patients with bipolar disorder and after five decades, lithium continues to be the mainstay of treatment for bipolar disorder. Recent research on the molecular mechanism underlying the therapeutic effect of lithium has focused on how it changes the activities of cellular signal transduction systems, especially the cyclic AMP and phosphomositide second-messenger systems. Considerable data suggest that carbamazepine and valproate (VPA) are an alternative or adjunctive treatment to lithium. VPA, despite being dissimilar structurally to lithium, shares most of the effects of lithium at the level of protein kinase C (PKC). Like lithium, VPA reduces the activity of PKC and reduces the protein levels of different PKC isoforms, however the effects of VPA appear to be largely independent of inositol. The ton-term efficacy of VPA and lithium in bipolar disorder suggested that modulation of gene expression might be an important target for these drugs. Both VPA and lithium altered the expression of the early inducible genes for c-fos and cjun thus promoting the expression of specific proteins. The genes known to be regulated by the AP-1 family of transcription factors include genes for various neuropeptides, neurotrophins, receptors, transcription factors, enzymes, proteins that bind to cytoskeletal elements, and cytoprotective proteins such as bcl-2. In conclusion chronic treatment with lithium and other mood stabilizers, by regulating transcriptional factors, may modulate the expression of a variety of genes that compensate for aberrant signalling associated with the pathophysiology of bipolar disorder

    Circulating phagocytes: The ancient and conserved interface between immune and neuroendocrine function

    Get PDF
    Immune and neuroendocrine functions display significant overlap in highly divergent and evolutionarily distant models such as molluscs, crustaceans, insects and mammals. Fundamental players in this crosstalk are professional phagocytes: macrophages in vertebrates and immunocytes in invertebrates. Although they have different developmental origins, macrophages and immunocytes possess comparable functions and differentiate under the control of evolutionarily conserved transcription factors. Macrophages and immunocytes share their pools of receptors, signalling molecules and pathways with neural cells and the neuro-endocrine system. In crustaceans, adult transdifferentiation of circulating haemocytes into neural cells has been documented recently. In light of developmental, molecular and functional evidence, we propose that the immune-neuroendocrine role of circulating phagocytes pre-dates the split of protostomian and deuterostomian superphyla and has been conserved during the evolution of the main groups of metazoans

    Transcriptional effect of serotonin in the ganglia of Lymnaea stagnalis

    Get PDF
    The serotonin system (5HT) is highly conserved in both vertebrates and invertebrates, and numerous evidence supports a biological link between 5HT and numerous animal function. In the present paper we evaluated the transcriptional effects of a serotonergic stimulation on selected targets involved in 5HT signalling and neurotransmission in the central nervous system of the great pond snail Lymnaea stagnalis. Adult snails were treated acutely (6 h) or chronically (48 h) with either 5-hydroxytrypthophan (5-HTP 1mM), the immediate precursor of serotonin, fluoxetine (FLX 1μM), a selective serotonin reuptake inhibitor, or a combination of two. The central ring ganglia were dissected and used for q-PCR gene expression analysis. Transcription was strongly induced following a chronic, but not an acute, exposure to 5-HTP in the ganglia of Lymnaea. In particular, LymCREB1 and LymP2X mRNA levels were decreased following a 6 h exposure and increased in snails receiving 5-hydroxytryptophan for 48 h. Interestingly, this effect was reduced when snails were exposed chronically to both 5-HTP and FLX, suggesting a role for SERT in mediating the effect of 5-hydroxytryptophan. These data suggest that L. stagnalis is suited to unravel the complexity of the serotonin signaling pathway

    Behavioral and Transcriptional Effects of Short or Prolonged Fasting on the Memory Performances of Lymnaea stagnalis

    Get PDF
    Introduction: The Garcia effect, a solid learning paradigm, was used to investigate the molecular and behavioral effects induced by different lengths of fasting on the cognitive functions in the pond snail Lymnaea stagnalis, a valid model systemMethods: Three experimental groups were used: Moderately hungry snails, food-deprived for 1 day (D1 snails), severely hungry snails (D5 snails), fasting for 5 days, and satiated snails with ad libitum access to food (AL snails). In the Garcia effect, a single pairing of an appetitive stimulus with a heat stressor results in a learned taste-specific negative hedonic shift. D5 snails were injected with bovine insulin and D1 snails with the insulin receptor antibody (Ab). As a control group, AL snails were injected with saline. Gene expression analyses were performed by Real-time PCR in snails' central nervous system (CNS).Results: AL snails are 'average learners', D1 snails are the best performers, whereas the D5 ones do not show the Garcia effect. Severely fasting snails injected with insulin 3h before the training procedure, show the Garcia effect, whereas injecting 1-day fasting snails with insulin receptor Ab blocks their ability to express memory. The differences in memory performances are associated with changes in the expression levels of selected targets involved in neuronal plasticity, energy homeostasis, and stress response.Discussion: Our results suggest that short-term fasting creates an optimal internal state in L. stagnalis' CNS, allowing a spike in insulin release and an upregulation of genes involved in neuroplasticity. Long-term fasting, instead, upregulates genes involved in energy homeostasis and animal survival

    Molecular changes associated with escitalopram response in a stress-based model of depression

    Get PDF
    Converging evidence points at hypothalamus-pituitary-adrenal (HPA) axis hyperactivity and neuroinflammation as important factors involved in the etiopathogenesis of major depressive disorder (MDD) and in therapeutic efficacy of antidepressants. In this study, we examined the molecular effects associated with a response to a week-long treatment with escitalopram in the chronic escape deficit (CED) model, a validated model of depression based on the induction of an escape deficit after exposure of rats to an unavoidable stress. We confirmed our previous result that a treatment with escitalopram (10 mg/kg) was effective after 7 days in reverting the stress-induced escape deficit in approximately 50% of the animals, separating responders from non-responders. Expression of markers of HPA axis functionality as well as several inflammatory mediators were evaluated in the hypothalamus, a key structure integrating signals from the neuro, immune, endocrine systems. In the hypothalamus of responder animals we observed a decrease in the expression of CRH and its receptors and an increase in GR protein in total and nuclear extracts; this effect was accompanied by a significant decrease in circulating corticosterone in the same cohort. Hypothalamic IL-1\uce\ub2 and TNF\uce\ub1 expression were increased in stressed animals, while CXCL2, IL-6, and ADAM17 mRNA levels were decreased in escitalopram treated rats regardless of the treatment response. These data suggest that efficacy of a one week treatment with escitalopram may be partially mediated by a decrease HPA axis activity, while in the hypothalamus the drug-induced effects on the expression of immune modulators did not correlate with the behavioural outcome

    Psychosocial assessment of families caring for a child with acute lymphoblastic leukemia, epilepsy or asthma: Psychosocial risk as network of interacting symptoms

    Get PDF
    The purpose of this study is to assess psychosocial risk across several pediatric medical conditions and test the hypothesis that different severe or chronic pediatric illnesses are characterized by disease specific enhanced psychosocial risk and that risk is driven by disease specific connectivity and interdependencies among various domains of psychosocial function using the Psychosocial Assessment Tool (PAT). In a multicenter prospective cohort study of 195 patients, aged 5-12, 90 diagnosed with acute lymphoblastic leukemia (ALL), 42 with epilepsy and 63 with asthma, parents completed the PAT2.0 or the PAT2.0 generic version. Multivariate analysis was performed with disease as factor and age as covariate. Graph theory and network analysis was employed to study the connectivity and interdependencies among subscales of the PAT while data-driven cluster analysis was used to test whether common patterns of risk exist among the various diseases. Using a network modelling approach analysis, we observed unique patterns of interconnected domains of psychosocial factors. Each pathology was characterized by different interdependencies among the most central and most connected domains. Furthermore, data-driven cluster analysis resulted in two clusters: Patients with ALL (89%) mostly belonged to cluster 1, while patients with epilepsy and asthma belonged primarily to cluster 2 (83% and 82% respectively). In sum, implementing a network approach improves our comprehension concerning the character of the problems central to the development of psychosocial difficulties. Therapy directed at problems related to the most central domain(s) constitutes the more rational one because such an approach will inevitably carry over to other domains that depend on the more central function

    Disease-induced neuroinflammation and depression

    Get PDF
    Progression of major depression, a multifactorial disorder with a neuroinflammatory signature, seems to be associated with the disruption of body allostasis. High rates of comorbidity between depression and specific medical disorders, such as, stroke, chronic pain conditions, diabetes mellitus, and human immunodeficiency virus (HIV) infection, have been extensively reported. In this review, we discuss how these medical disorders may predispose an individual to develop depression by examining the impact of these disorders on some hallmarks of neuroinflammation known to be impaired in depressed patients: altered permeability of the blood brain barrier, immune cells infiltration, activated microglia, increased cytokines production, and the role of inflammasomes. In all four pathologies, blood brain barrier integrity was altered, allowing the infiltration of peripheral factors, known to activate resident microglia. Evidence indicated morphological changes in the glial population, increased levels of circulating pro-inflammatory cytokines or increased production of these mediators within the brain, all fundamental in neuroinflammation, for the four medical disorders considered. Moreover, activity of the kynurenine pathway appeared to be enhanced. With respect to the inflammasome NLRP3, a new target whose role in neuroinflammation is emerging as being important, accumulating data suggest its involvement in the pathogenesis of brain injury following stroke, chronic pain conditions, diabetes mellitus or in HIV associated immune impairment. Finally, data gathered over the last 10 years, indicate and confirm that depression, stroke, chronic pain, diabetes, and HIV infection share a combination of underlying molecular, cellular and network mechanisms leading to a general increase in the neuroinflammatory burden for the individual

    Microfluidics as a Novel Tool for Biological and Toxicological Assays in Drug Discovery Processes: Focus on Microchip Electrophoresis

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.The last decades of biological, toxicological, and pharmacological research have deeply changed the way researchers select the most appropriate ‘pre-clinical model’. The absence of relevant animal models for many human diseases, as well as the inaccurate prognosis coming from ‘conventional’ pre-clinical models, are among the major reasons of the failures observed in clinical trials. This evidence has pushed several research groups to move more often from a classic cellular or animal modeling approach to an alternative and broader vision that includes the involvement of microfluidic-based technologies. The use of microfluidic devices offers several benefits including fast analysis times, high sensitivity and reproducibility, the ability to quantitate multiple chemical species, and the simulation of cellular response mimicking the closest human in vivo milieu. Therefore, they represent a useful way to study drug–organ interactions and related safety and toxicity, and to model organ development and various pathologies ‘in a dish’. The present review will address the applicability of microfluidic-based technologies in different systems (2D and 3D). We will focus our attention on applications of microchip electrophoresis (ME) to biological and toxicological studies as well as in drug discovery and development processes. These include high-throughput single-cell gene expression profiling, simultaneous determination of antioxidants and reactive oxygen and nitrogen species, DNA analysis, and sensitive determination of neurotransmitters in biological fluids. We will discuss new data obtained by ME coupled to laser-induced fluorescence (ME-LIF) and electrochemical detection (ME-EC) regarding the production and degradation of nitric oxide, a fundamental signaling molecule regulating virtually every critical cellular function. Finally, the integration of microfluidics with recent innovative technologies—such as organoids, organ-on-chip, and 3D printing—for the design of new in vitro experimental devices will be presented with a specific attention to drug development applications. This ‘composite’ review highlights the potential impact of 2D and 3D microfluidic systems as a fast, inexpensive, and highly sensitive tool for high-throughput drug screening and preclinical toxicological studies.Italian Ministry of Health Research Program 2018 (2635256)American Heart Association-Midwest Affiliate Postdoctoral Research Fellowship (NFP0075515)Italian Ministry of Economic Development (F/200110/02/X45)Italian Ministry of EducationNIH COBRE P20GM103638Oasi Research Institute—IRCC
    • …
    corecore