13 research outputs found

    The Italian inter-laboratory study on the detection of Pseudomonas syringae pv. actinide

    Get PDF
    A severe form of bacterial canker of kiwifruit, caused by Pseudomonas syringae pv. actinidiae (Psa), has been detected in all the main areas of cultivation of kiwifruit (Actinidia deliciosa and A. chinensis). Since 2010 several research groups have been assessing methods and procedures to detect and identify Psa, both from symptomatic and symptomless host material. In 2011, a study to compare Psa diagnostic methods was performed with reference to Psa strains and related pathovars, and with plant extracts or DNA obtained from healthy and naturally infected leaves, pollen or wood. The study revealed the strengths and the weaknesses of the assessed methods. The procedure included screening tests for Psa detection and for identification of Psa colonies. The methods assessed were bacterial isolation on generic and semi-selective media, PCR analysis (single, duplex and rep-PCR assay, the latter for identification only). The results highlighted the best performance of semi-selective with respect the generic media; the usefulness of the direct-PCR as screening tests for Psa detection; and the greater specificity of duplex-PCR and sensitivity of simple-PCR. The use of semi-selective medium for isolation and of two PCR-based methods - in parallel - for Psa detection are suggested. Both rep-PCR and duplex-PCR, were found to be specific, and are recommended as an identification test for this pathogen

    Genetic diversity and population structure of Pseudomonas savastanoi, an endemic pathogen of the Mediterranean area, revealed up to strain level by the MLVA assay

    Get PDF
    © 2020, Società Italiana di Patologia Vegetale (S.I.Pa.V.). Pseudomonas savastanoi is a bacterial species included in the Pseudomonas syringae complex. It is further sub-typed in pathovars which are the causal agents of a group of diseases of woody plants, such as the “knot disease” on olive and oleander and the bacterial canker on ash. Given its long-established presence in the Mediterranean area, the pathogen causing the afore-mentioned diseases can be considered endemic. Here, an MLVA approach was developed to assess the genetic relationships among and within those pathovars, with a specific focus on P. savastanoi pv. savastanoi. By analyzing the genome of the P.savastanoi pv. savastanoi strain NCPPB 3335 (accession n° CP008742), 14 Tandem Repeat (TR) loci were identified and the corresponding primers were designed and used for the amplification of genomic DNAs from 84 strains belonging to Pseudomonas savastanoi pathovars. Data were analyzed using different approaches, such as hierarchical clustering, STRUCTURE, and k-means clustering with DAPC to evaluate the effectiveness of the assay in describing pathovars and population structure of the pathogen. Results reveal a very complex articulation of genetic relationships, as expected from a long-time evolving pathogen, while providing the possibility to discriminate the pathovars between each other. At intra-pathovar level, the MLVA assay clusters isolates mainly according to their hosts and geographic origin. This resulted particularly useful in the identification and tracking of P. savastanoi populations at local level.11n
    corecore