11 research outputs found

    Diversité et différenciation génétiques des populations de tortues vertes (Chelonia mydas) dans les sites de ponte et d‟alimentation du sud-ouest de l‟océan Indien : Application aux stratégies de conservation de l‟espèce

    No full text
    The green turtle (Chelonia mydas) is an emblematic species of marine life. However, nowadays it is subject to many threats (poaching, by-catch). Even if there is deep growing measures for its protection, the green turtle still is an endangered species and it is listed in Appendix I of Washington Convention (CITES). In order to elaborate efficient conservation and management plans, perfect knowledge of green turtle biology, but also of its population structure and their characteristics, are needed. In this thesis, we have assessed genetic structure of green turtle populations in the South-Western Indian Ocean by using genetic tools. In all, 1551 tissue samples have been collected from our study zone and from our control site French Polynesia (37 samples). All kinds if individuals were sampled (except males in reproductive phase) from 15 sampling sites including nesting, foraging, and immature development site. We used both control region of mitochondrial DNA and 6 microsatellite loci to better infer maternal and paternal lineages. We identified 29 haplotypes in the South-Western Indian Ocean. They are distributed in 3 independent and highly divergent clades, including one composed with haplotypes from Atlantic Ocean. For 7 of these haplotypes, it was the first time they were detected in the study zone. Fifteen haplotypes were previously undescribed, distributed in all the 3 clades. These new haplotypes seem to be specific to the South-Western Indian Ocean, which is then an original zone. Besides, we found a high allelic richness. These results show the South-western Indian Ocean is rich and very diversified. This region plays an important role in the global diversity of the species. The South-Western Indian Ocean is one of the two contact zones presently known between the two metapopulations of green turtles (Atlantic-Mediterranean and Indo-Pacific). This contact induces a genetic cline based on CM8 (Atlantic) and C3 (Indo-Pacific) haplotype frequencies. Analysis of the microsatellite differentiation between individuals provides evidence of genetic exchanges between the two metapopulations in the region. The South-Western Indian Ocean participates to green turtle global genetic mixing. Studying the influence of several intrinsic and extrinsic factors on population structuring provides useful information for management plan elaboration. We found no significant difference between genetic structures of foraging females and males, contrary to immature turtles which seem to be organised in ‗regional pools‘. This organisation could be due to both immature natal homing and influence of oceanic currents. High mitochondrial differentiation of nesting females and low global microsatellite differentiation of our samples indicate male-mediated gene flow among populations of the study zone. The genetic composition of a sampling site presents no significant variation along the year. Nevertheless, it can be significantly different from a year to an other one. This may result from alternation of distinct populations on the same site. We noticed different evolution in 10 or 20 years of the genetic composition depending on the sampling site. Geographic distance seems not to have significant influence on population structuring concerning microsatellite markers. Nesting females of Saziley Beach (Mayotte Island, Comoros Archipelago) present genetic divergence from females nesting in the two other sampled beaches of this island. The observed population structure shows no contradiction with the organisation of oceanic currents in the South-Western Indian Ocean. Comparing the results from the two genetic markers used, we identified 8 genetic differentiated clusters of turtles in the study zone and at least 6 distinct populations. These clusters constitute 8 potential management units (MUs) which could serve as basis in the elaboration of conservation and management plans.La tortue verte (Chelonia mydas) constitue l‘un des espèces emblématiques de la vie marine, pourtant de nombreuses menaces pèsent de nos jours encore sur sa survie (braconnage, captures accidentelles). Ainsi, malgré l‘essor de mesures de protection menées à travers pour sa sauvegarde, la tortue verte constitue une espèce ‗en danger d‘extinction‘ et figure dans l‘Annexe I de la Convention de Washington (CITES). Afin d‘élaborer des plans de gestion et de conservation qui soient efficaces, il est important d‘avoir une parfaite connaissance de la biologie de la tortue verte, mais aussi de la structure de ses populations et de leurs caractéristiques. C‘est dans ce cadre que s‘inscrit la présente étude. L‘objectif de cette étude était d‘acquérir des connaissances sur la structure des populations de tortues vertes dans le sud-ouest de l‘océan Indien grâce à l‘utilisation de l‘outil génétique. Au total, 1551 échantillons de tissu ont été collectés dans la zone d‘étude et dans notre site témoin la Polynésie française (37 échantillons). Toutes les catégories d‘individus ont été échantillonnées (excepté les mâles en phase de reproduction) et les 15 sites d‘échantillonnage comprennent à la fois des sites de ponte, d‘alimentation et de développement pour les immatures. Deux types de marqueurs ont été utilisés : la région contrôle de l‘ADN mitochondrial et 6 loci microsatellites, afin d‘appréhender au mieux l‘apport des lignées maternelles et paternelles. Nous avons pu mettre en évidence la présence dans le sud-ouest de l‘océan Indien de 29 haplotypes distincts, appartenant à trois clades fortement divergents dont l‘un constitué d‘haplotypes originaires de l‘océan Atlantique. Parmi ces haplotypes, 7 ont été détectés pour la première fois dans la zone d‘étude, et 15 autres n‘ont jamais été précédemment décrits chez cette espèce. Ils sont présents dans chacun des 3 clades d‘haplotypes. Ces nouveaux haplotypes semblent spécifiques à la région, et en font une zone originale. On observe par ailleurs une grande richesse allélique dans les effectifs analysés. Ces résultats montrent que le sud-ouest de l‘océan Indien est une zone riche et très diversifiée. Cette région joue un rôle important dans la diversité génétique globale de l‘espèce. Le sud-ouest de l‘océan Indien constitue l‘une des deux seules zones connues à l‘heure actuelle de contact entre les deux métapopulations de tortues vertes (Atlantique-Méditerranée et Indo-Pacifique). Ce contact a entraîné la formation d‘un cline génétique portant principalement sur les fréquences relatives des haplotypes CM8 (Atlantique) et C3 (Indo-Pacifique). Les résultats obtenus lors de l‘analyse microsatellite de la différenciation entre les individus originaires des deux métapopulations montrent que le sud-ouest de l‘océan Indien constitue une zone d‘échanges génétiques entre les deux métapopulations, participant au brasage génétique de l‘espèce. L‘étude de facteurs, intrinsèques et extrinsèques, pouvant influencer la structuration des populations apportent de nombreuses informations qui pourraient s‘avérer utiles lors de l‘élaboration de plans de gestion. La structure des femelles et des mâles en alimentation ne diffère pas, contrairement à celle des immatures qui semble s‘organiser en ‗pools régionaux‘ qui seraient le fruit de l‘interaction d‘un comportement de philopatrie et d‘une influence des courants océaniques. La forte différenciation mitochondriale des femelles en ponte et la très faible différenciation microsatellite observée à l‘échelle de la région, indiquent l‘existence de flux de gènes via les mâles. La composition génétique d‘un site ne varie pas de manière significative au cours de l‘année. Par contre, elle peut varier d‘une année à l‘autre, signifiant l‘alternance dans certains sites de ponte de plusieurs populations distinctes. L‘évolution de la composition génétique d‘un groupe, au cours de 10 ou 20 ans, diffère selon le site considéré. La distance ne semble pas influencer de manière significative la structuration des populations au niveau microsatellite. Les femelles en ponte sur la plage de Saziley (Mayotte) diffèrent génétiquement de celles pondant sur les deux autres plages de l‘île. La structure observée des populations est en accord avec l‘organisation des courants océanique dans la région

    Les étoiles de mer et leurs cousins - section bibliographique

    No full text
    Section bibliographique du livre : Les étoiles de mer et leurs cousins 80 clés pour comprendre les échinodermes Coralie et Marc TAQUET Editions QUA

    Diversité et différenciation génétiques des populations de tortues vertes, Chelonia mydas, dans les sites de ponte et d'alimentation du Sud-Ouest de l'océan Indien (application aux stratégies de conservation de l'espèce)

    No full text
    L'objectif de cette étude est d'acquérir des connaissances sur la structure des populations de tortues vertes dans le sud-ouest de l'océan Indien grâce à l'étude de la région contrôle de l'ADN mitochondrial et de 6 loci micro satellites. Au total, 1551 échantillons ont été collectés. La zone d'étude est riche et très diversifiée, avec 29 haplotypes (dont 15 nouvellement décrits) appartenant à trois clades fortement divergents. On observe l'existence d'un cline génétique. La région constitue une zone d'échanges génétiques entre les deux métapopulations de tortues vertes (Atlantique-Méditerranée et Indo-Pacifique), participant au brasage génétique de l'espèce. L'étude de facteurs, intrinsèques et extrinsèques, pouvant influencer la structuration des populations apportent de nombreuses informations qui pourraient s'avérer utiles lors de l'élaboration de plans de gestion. Les 8 unités de gestion (MUs) potentielles identifiées pourront servir de base à l'élaboration de plans de gestion.In this study, we inferred the genetic structure of green turtle populations in the South-Western Indian Ocean using control region of mitochondrial DNA and 6 micro satellite loci. We collected 1551 samples. The study zone is rich and very diversified, with 29 haplotypes (including 15 described for the first time) distributed in 3 highly divergent clades. We notice the existence of a genetic cline. Genetic exchanges between the two metapopulations of green turtles (Atlantic-Mediterranean and Indo-Pacifîc) occur in this region, and participate to the genetic mixing of the species. The study of intrinsic and extrinsic factors which could influence the population structuring provides useful information for the elaboration of management plans. The 8 potential management units (MUs) identified might be used as base for the elaboration of management plans.SAINT DENIS/REUNION-Droit Lettre (974112101) / SudocSudocFranceReunionFRR

    Genetic diversity, paraphyly and incomplete lineage sorting of mtDNA, ITS2 and microsatellite flanking region in closely related Heliopora species (Octocorallia)

    Get PDF
    Examining genetic diversity and lineage sorting of different genes in closely related species provide useful information for phylogenetic analyses and ultimately for understanding the origins of biodiversity. In this study, we examined inter- and intraspecific genetic variation in internal transcribed spacer 2 (ITS2), partial mitochondrial gene (mtMutS), and nuclear microsatellite flanking region in two closely related octocoral species (Heliopora coerulea, HC-A and HC-B). These species were recently identified in a population genetic study using microsatellite markers. The two species have different reproductive timing, which ecologically promotes lineage sorting. In this study, we examined whether species boundaries could be detected by the commonly used nuclear ITS2 and mtMutS, as well as by possibly neutral microsatellite flanking sequences. Haplotype network analysis of microsatellite flanking region revealed that a possible ancestral haplotype was still shared between the two species, indicating on-going lineage sorting. Haplotype network analysis of ITS2 and microsatellite flanking region revealed shared haplotypes between the two lineages. The two species shared fewer ITS2 sequences than microsatellite flanking region sequences. The almost fixed point mutation at the tip of helix 3 of ITS2 was not associated with the secondary structure or compensatory base changes (CBCs). The phylogenetic tree of ITS2 showed paraphyly and that of the microsatellite flanking region indicated that lineage sorting for the two species may be incomplete. Much higher intra- and inter-individual variation of ITS2 was observed in HC-B than that in HC-A, highlighting the importance of examining ITS2 from multiple individuals to estimate genetic diversity. The mitochondrial mtMutS gene sequences from 39 individuals, including both species collected from Japan and Taiwan, showed no variation because of slow rates of mitochondrial nucleotide substitution. This study suggests caution is warranted when reciprocal monophyly in a phylogenetic tree is used as the criterion for delimiting closely related octocoral species based on ITS2 or mtMtuS sequences. Detection of boundaries between closely related species requires multi-locus analysis, such as genetic admixture analysis using multiple individuals

    Seascape Genetics and the Spatial Ecology of Juvenile Green Turtles

    Get PDF
    WOS:000529189000042International audienceUnderstanding how ocean currents impact the distribution and connectivity of marine species, provides vital information for the effective conservation management of migratory marine animals. Here, we used a combination of molecular genetics and ocean drift simulations to investigate the spatial ecology of juvenile green turtle (Chelonia mydas) developmental habitats, and assess the role of ocean currents in driving the dispersal of green turtle hatchlings. We analyzed mitochondrial (mt)DNA sequenced from 358 juvenile green turtles, and from eight developmental areas located throughout the Southwest Indian Ocean (SWIO). A mixed stock analysis (MSA) was applied to estimate the level of connectivity between developmental sites and published genetic data from 38 known genetic stocks. The MSA showed that the juvenile turtles at all sites originated almost exclusively from the three known SWIO stocks, with a clear shift in stock contributions between sites in the South and Central Areas. The results from the genetic analysis could largely be explained by regional current patterns, as shown by the results of passive numerical drift simulations linking breeding sites to developmental areas utilized by juvenile green turtles. Integrating genetic and oceanographic data helps researchers to better understand how marine species interact with ocean currents at different stages of their lifecycle, and provides the scientific basis for effective conservation management

    CoCoNet: Towards coast to coast networks of marine protected areas (From the shore to the high and deep sea), coupled with sea-based wind energy potential

    No full text
    This volume contains the main results of the EC FP7 "The Ocean of Tomorrow" Project CoCoNet, divided in two sections: 1) a set of guidelines to design networks of Marine Protected Areas in the Mediterranean and the Black Seas; 2) a smart wind chart that will allow evaluating the possibility of installing Offshore Wind Farms in both seas. The concept of Cells of Ecosystem Functioning, based on connectivity, is introduced to define natural units of management and conservation. The definition of Good Environmental Status, as defined in the Marine Strategy Framework Directive, is fully embraced to set the objectives of the project, by adopting a holistic approach that integrates a full set of disciplines, ranging from physics to bio-ecology, economics, engineering and many sub-disciplines. The CoCoNet Consortium involved scientist sfrom 22 states, based in Africa, Asia, and Europe, contributing to build a coherent scientific community

    Editorial. A supplement of Scires-it on the COCONET european project

    Get PDF
    The Supplement to vol. 6, 2016 of SCIRES-IT contains the result of CoCoNet (Towards COast to COast NETworks of marine protected areas, coupled with sea-based wind energy potential), a project of the EU Oceans of Tomorrow programme (http://www.coconet-fp7.eu). The European Union requires Open Access to the results of the projects resulting from its support to scientific advancement. This is in full accordance with the policy of SCIRES-IT, an eco-sustainable open–access journal, which joins the main principles of the Berlin Declaration on Open Access with the aims of the International Convention on Biological Diversity. CoCoNet tackled two problems that are closely linked with each other: the protection of the marine environment and clean energy production. Hence, the Supplement is divided into two parts that, together, form a unicum

    CoCoNet: Towards coast to coast networks of marine protected areas (From the shore to the high and deep sea), coupled with sea-based wind energy potential

    No full text
    This volume contains the main results of the EC FP7 "The Ocean of Tomorrow" Project CoCoNet, divided in two sections: 1) a set of guidelines to design networks of Marine Protected Areas in the Mediterranean and the Black Seas; 2) a smart wind chart that will allow evaluating the possibility of installing Offshore Wind Farms in both seas. The concept of Cells of Ecosystem Functioning, based on connectivity, is introduced to define natural units of management and conservation. The definition of Good Environmental Status, as defined in the Marine Strategy Framework Directive, is fully embraced to set the objectives of the project, by adopting a holistic approach that integrates a full set of disciplines, ranging from physics to bio-ecology, economics, engineering and many sub-disciplines. The CoCoNet Consortium involved scientist sfrom 22 states, based in Africa, Asia, and Europe, contributing to build a coherent scientific community
    corecore