19 research outputs found

    Friedmann Equation and Stability of Inflationary Higher Derivative Gravity

    Get PDF
    Stability analysis on the De Sitter universe in pure gravity theory is known to be useful in many aspects. We first show how to complete the proof of an earlier argument based on a redundant field equation. It is shown further that the stability condition applies to k≠0k \ne 0 Friedmann-Robertson-Walker spaces based on the non-redundant Friedmann equation derived from a simple effective Lagrangian. We show how to derive this expression for the Friedmann equation of pure gravity theory. This expression is also generalized to include scalar field interactions.Comment: Revtex, 6 pages, Add two more references, some typos correcte

    An Overview on “Cloud Control” Photogrammetry in Big Data Era

    No full text
    In the present era of big data, photogrammetric image collection modes are characterized with the progressive course of diversity, efficiency and facilitation, which are producing large sets of photogrammetric image data. They further bring the request for advanced processing with higher level of efficiency, automation and intelligence. However, the efficiency of fundamental photogrammetric processing, known as geometric positioning, is still majorly restricted to control points acquired through complex and inefficient field works. In view of this problem, we promote the concept of "cloud control" photogrammetry, which regards geo-encoded data as geometric control instead of field control points, and is achieved via control information extraction with extensive and intensive automatic matching (or registration) technology. Three control modes will be introduced, considered as image-based-control, vector-map-based-control and LiDAR-point-based-control respectively. By the end of the paper, we provide the discussion on the application prospects and foreseeable problems of "cloud control" photogrammetry

    Matching Multi-Source Optical Satellite Imagery Exploiting a Multi-Stage Approach

    No full text
    Geometric distortions and intensity differences always exist in multi-source optical satellite imagery, seriously reducing the similarity between images, making it difficult to obtain adequate, accurate, stable, and well-distributed matches for image registration. With the goal of solving these problems, an effective image matching method is presented in this study for multi-source optical satellite imagery. The proposed method includes three steps: feature extraction, initial matching, and matching propagation. Firstly, a uniform robust scale invariant feature transform (UR-SIFT) detector was used to extract adequate and well-distributed feature points. Secondly, initial matching was conducted based on the Euclidean distance to obtain a few correct matches and the initial projective transformation between the image pair. Finally, two matching strategies were used to propagate matches and produce more reliable matching results. By using the geometric relationship between the image pair, geometric correspondence matching found more matches than the initial UR-SIFT feature points. Further probability relaxation matching propagated some new matches around the initial UR-SIFT feature points. Comprehensive experiments on Chinese ZY3 and GaoFen (GF) satellite images revealed that the proposed algorithm performs well in terms of the number of correct matches, correct matching rate, spatial distribution, and matching accuracy, compared to the standard UR-SIFT and triangulation-based propagation method

    SREVAS: Shading Based Surface Refinement under Varying Albedo and Specularity

    No full text
    Shape-from-shading and stereo vision are two complementary methods to reconstruct 3D surface from images. Stereo vision can reconstruct the overall shape well but is vulnerable in texture-less and non-Lambertian areas where shape-from-shading can recover fine details. This paper presents a novel, generic shading based method to refine the surface generated by multi-view stereo. Different from most of the shading based surface refinement methods, the new development does not assume the ideal Lambertian reflectance, known illumination, or uniform surface albedo. Instead, specular reflectance is taken into account while the illumination can be arbitrary and the albedo can be non-uniform. Surface refinement is achieved by solving an objective function where the imaging process is modeled with spherical harmonics illumination and specular reflectance. Our experiments are carried out using images of indoor scenes with obvious specular reflection and of outdoor scenes with a mixture of Lambertian and specular reflections. Comparing to surfaces created by current multi-view stereo and shape-from-shading methods, the developed method can recover more fine details with lower omission rates (6.11% vs. 24.25%) in the scenes evaluated. The benefit is more apparent when the images are taken with low-cost, off-the-shelf cameras. It is therefore recommended that a general shading model consisting of varying albedo and specularity shall be used in routine surface reconstruction practice

    Extracting Rectified Building Footprints from Traditional Orthophotos: A New Workflow

    No full text
    Deep learning techniques such as convolutional neural networks have largely improved the performance of building segmentation from remote sensing images. However, the images for building segmentation are often in the form of traditional orthophotos, where the relief displacement would cause non-negligible misalignment between the roof outline and the footprint of a building; such misalignment poses considerable challenges for extracting accurate building footprints, especially for high-rise buildings. Aiming at alleviating this problem, a new workflow is proposed for generating rectified building footprints from traditional orthophotos. We first use the facade labels, which are prepared efficiently at low cost, along with the roof labels to train a semantic segmentation network. Then, the well-trained network, which employs the state-of-the-art version of EfficientNet as backbone, extracts the roof segments and the facade segments of buildings from the input image. Finally, after clustering the classified pixels into instance-level building objects and tracing out the roof outlines, an energy function is proposed to drive the roof outline to maximally align with the building footprint; thus, the rectified footprints can be generated. The experiments on the aerial orthophotos covering a high-density residential area in Shanghai demonstrate that the proposed workflow can generate obviously more accurate building footprints than the baseline methods, especially for high-rise buildings

    Inshore marine litter detection using radiometric and geometric data of terrestrial laser scanners

    No full text
    The increasing inshore marine litters (IML) have been jeopardizing the coastal ecology and environment and have attracted widespread concerns. Nevertheless, the accurate detection and quantitative characterization of IML remain a challenge. In this study, a new method is proposed to automatically detect and extract the IML from terrestrial laser scanning (TLS) 3D point clouds. IML are progressively extracted from the surroundings through four major steps by jointly using the radiometric/intensity information and a series of derived geometric features. First, the intensity data are calibrated by a polynomial model for an initial segmentation according to the spectral differences between the IML and surroundings. Second, a new proposed model is used to calibrate the density data for a further discrimination based on the size discrepancies between the IML and surroundings. Third, a connectivity clustering algorithm is used to group the points into different clusters. Cluster geometric features in terms of the shapes and patterns (i.e., linearity, sizes, and verticality) are constructed to identify the IML. Fourth, a geometric self-repairing procedure is used to retrieve the misclassified IML points. An artificially-arranged scene on a bare mudflat and four natural scenes with different circumstances and IML categories are investigated to validate the proposed method. The overall accuracy and kappa coefficient of the proposed method are averagely 98% and 0.69, respectively. Compared with the classical methods, the proposed method shows good robustness performance in different natural scenes with varied IML categories, vegetation coverages, and environmental disturbances. The proposed method shows great promise in IML spatiotemporal interpretation and provides an alternative tool for the validation of large-scale IML products from space-borne or airborne remote sensing platforms

    An Optimum Deployment Algorithm of Camera Networks for Open-Pit Mine Slope Monitoring

    No full text
    With the growth in demand for mineral resources and the increase in open-pit mine safety and production accidents, the intelligent monitoring of open-pit mine safety and production is becoming more and more important. In this paper, we elaborate on the idea of combining the technologies of photogrammetry and camera sensor networks to make full use of open-pit mine video camera resources. We propose the Optimum Camera Deployment algorithm for open-pit mine slope monitoring (OCD4M) to meet the requirements of a high overlap of photogrammetry and full coverage of monitoring. The OCD4M algorithm is validated and analyzed with the simulated conditions of quantity, view angle, and focal length of cameras, at different monitoring distances. To demonstrate the availability and effectiveness of the algorithm, we conducted field tests and developed the mine safety monitoring prototype system which can alert people to slope collapse risks. The simulation’s experimental results show that the algorithm can effectively calculate the optimum quantity of cameras and corresponding coordinates with an accuracy of 30 cm at 500 m (for a given camera). Additionally, the field tests show that the algorithm can effectively guide the deployment of mine cameras and carry out 3D inspection tasks

    Structure-Aware Convolution for 3D Point Cloud Classification and Segmentation

    No full text
    Semantic feature learning on 3D point clouds is quite challenging because of their irregular and unordered data structure. In this paper, we propose a novel structure-aware convolution (SAC) to generalize deep learning on regular grids to irregular 3D point clouds. Similar to the template-matching process of convolution on 2D images, the key of our SAC is to match the point clouds’ neighborhoods with a series of 3D kernels, where each kernel can be regarded as a “geometric template” formed by a set of learnable 3D points. Thus, the interested geometric structures of the input point clouds can be activated by the corresponding kernels. To verify the effectiveness of the proposed SAC, we embedded it into three recently developed point cloud deep learning networks (PointNet, PointNet++, and KCNet) as a lightweight module, and evaluated its performance on both classification and segmentation tasks. Experimental results show that, benefiting from the geometric structure learning capability of our SAC, all these back-end networks achieved better classification and segmentation performance (e.g., +2.77% mean accuracy for classification and +4.99% mean intersection over union (IoU) for segmentation) with few additional parameters. Furthermore, results also demonstrate that the proposed SAC is helpful in improving the robustness of networks with the constraints of geometric structures

    Improving Details of Building Façades in Open LiDAR Data Using Ground Images

    No full text
    Recent open data initiatives allow free access to a vast amount of light detection and ranging (LiDAR) data in many cities. However, most open LiDAR data of cities are acquired by airborne scanning, where points on building façades are sparse or even completely missing due to occlusions in the urban environment, leading to the absence of façade details. This paper presents an approach for improving the LiDAR data coverage on building façades by using point cloud generated from ground images. A coarse-to-fine strategy is proposed to fuse these two-point clouds of different sources with very limited overlaps. First, the façade point cloud generated from ground images is leveled by adjusting the facade normal to perpendicular to the upright direction. Then leveling façade point cloud is geolocated by alignment between images GPS data and their structure from motion (SfM) coordinates. Next, a modified coherent point drift algorithm with (surface) normal consistency is proposed to accurately align the façade point cloud to the LiDAR data. The significance of this work resides in the use of 2D overlapping points on the building outlines instead of the limited 3D overlap between the two-point clouds. This way we can still achieve reliable and precise registration under incomplete coverage and ambiguous correspondence. Experiments show that the proposed approach can significantly improve the façade details in open LiDAR data, and achieve 2 to 10 times higher registration accuracy, when compared to classic registration methods

    An Optimum Deployment Algorithm of Camera Networks for Open-Pit Mine Slope Monitoring

    No full text
    With the growth in demand for mineral resources and the increase in open-pit mine safety and production accidents, the intelligent monitoring of open-pit mine safety and production is becoming more and more important. In this paper, we elaborate on the idea of combining the technologies of photogrammetry and camera sensor networks to make full use of open-pit mine video camera resources. We propose the Optimum Camera Deployment algorithm for open-pit mine slope monitoring (OCD4M) to meet the requirements of a high overlap of photogrammetry and full coverage of monitoring. The OCD4M algorithm is validated and analyzed with the simulated conditions of quantity, view angle, and focal length of cameras, at different monitoring distances. To demonstrate the availability and effectiveness of the algorithm, we conducted field tests and developed the mine safety monitoring prototype system which can alert people to slope collapse risks. The simulation’s experimental results show that the algorithm can effectively calculate the optimum quantity of cameras and corresponding coordinates with an accuracy of 30 cm at 500 m (for a given camera). Additionally, the field tests show that the algorithm can effectively guide the deployment of mine cameras and carry out 3D inspection tasks
    corecore