22,417 research outputs found

    Multitraining support vector machine for image retrieval

    Get PDF
    Relevance feedback (RF) schemes based on support vector machines (SVMs) have been widely used in content-based image retrieval (CBIR). However, the performance of SVM-based RF approaches is often poor when the number of labeled feedback samples is small. This is mainly due to 1) the SVM classifier being unstable for small-size training sets because its optimal hyper plane is too sensitive to the training examples; and 2) the kernel method being ineffective because the feature dimension is much greater than the size of the training samples. In this paper, we develop a new machine learning technique, multitraining SVM (MTSVM), which combines the merits of the cotraining technique and a random sampling method in the feature space. Based on the proposed MTSVM algorithm, the above two problems can be mitigated. Experiments are carried out on a large image set of some 20 000 images, and the preliminary results demonstrate that the developed method consistently improves the performance over conventional SVM-based RFs in terms of precision and standard deviation, which are used to evaluate the effectiveness and robustness of a RF algorithm, respectively

    Information filtering via biased heat conduction

    Full text link
    Heat conduction process has recently found its application in personalized recommendation [T. Zhou \emph{et al.}, PNAS 107, 4511 (2010)], which is of high diversity but low accuracy. By decreasing the temperatures of small-degree objects, we present an improved algorithm, called biased heat conduction (BHC), which could simultaneously enhance the accuracy and diversity. Extensive experimental analyses demonstrate that the accuracy on MovieLens, Netflix and Delicious datasets could be improved by 43.5%, 55.4% and 19.2% compared with the standard heat conduction algorithm, and the diversity is also increased or approximately unchanged. Further statistical analyses suggest that the present algorithm could simultaneously identify users' mainstream and special tastes, resulting in better performance than the standard heat conduction algorithm. This work provides a creditable way for highly efficient information filtering.Comment: 4 pages, 3 figure

    Monte Carlo study of thermal fluctuations and Fermi-arc formation in d-wave superconductors

    Get PDF
    From the perspective of thermal fluctuations, we investigate the pseudogap phenomena in underdoped high-temperature curpate superconductors. We present a local update Monte Carlo procedure based on the Green's function method to sample the fluctuating pairing field. The Chebyshev polynomial method is applied to calculate the single-particle spectral function directly and efficiently. The evolution of Fermi arcs as a function of temperature is studied by examining the spectral function at Fermi energy as well as the loss of spectral weight. Our results signify the importance of the vortex-like phase fluctuation on the formation of Fermi arcs.Comment: 9 pages, 3 figures. Figures redraw

    Climbing the Density Functional Ladder: Non-Empirical Meta-Generalized Gradient Approximation Designed for Molecules and Solids

    Full text link
    The electron density, its gradient, and the Kohn-Sham orbital kinetic energy density are the local ingredients of a meta-generalized gradient approximation (meta-GGA). We construct a meta-GGA density functional for the exchange-correlation energy that satisfies exact constraints without empirical parameters. The exchange and correlation terms respect {\it two} paradigms: one- or two-electron densities and slowly-varying densities, and so describe both molecules and solids with high accuracy, as shown by extensive numerical tests. This functional completes the third rung of ``Jacob's ladder'' of approximations, above the local spin density and GGA rungs.Comment: 4 pages, 1 figure, 1 table. updated with minor and yet necessary corrections. New references are adde

    Four-quark state in QCD

    Get PDF
    The spectra of some 0++ four-quark states, which are composed of \bar qq pairs, are calculated in QCD. The light four-quark states are calculated using the traditional sum rules while four-quark states containing one heavy quark are computed in HQET. For constructing the interpolating currents, different couplings of the color and spin inside the \bar qq pair are taken into account. It is found that the spin and color combination has little effect on the mass of the four-quark states.Comment: 10 pages, 4 ps figures, Late

    Energy flux fluctuations in a finite volume of turbulent flow

    Full text link
    The flux of turbulent kinetic energy from large to small spatial scales is measured in a small domain B of varying size R. The probability distribution function of the flux is obtained using a time-local version of Kolmogorov's four-fifths law. The measurements, made at a moderate Reynolds number, show frequent events where the flux is backscattered from small to large scales, their frequency increasing as R is decreased. The observations are corroborated by a numerical simulation based on the motion of many particles and on an explicit form of the eddy damping.Comment: 10 Pages, 5 figures, 1 tabl

    Charge-ordering, commensurability and metallicity in the phase diagram of layered Na(x)CoO(2)

    Full text link
    The phase diagram of non-hydrated Na(x)CoO(2) has been determined by changing the Na content x using a series of chemical reactions. As x increases from 0.3, the ground state goes from a paramagnetic metal to a charge-ordered insulator (at x=1/2) to a `Curie-Weiss metal' (around 0.70), and finally to a weak-moment magnetically ordered state (x>0.75). The unusual properties of the state at 1/2 (including particle-hole symmetry at low T and enhanced thermal conductivity) are described. The strong coupling between the Na ions and the holes is emphasized.Comment: 4 pages with 3 figures, changed conten

    Exchange and Correlation in Open Systems of Fluctuating Electron Number

    Full text link
    While the exact total energy of a separated open system varies linearly as a function of average electron number between adjacent integers, the energy predicted by semi-local density functional approximations curves upward and the exact-exchange-only or Hartree-Fock energy downward. As a result, semi-local density functionals fail for separated open systems of fluctuating electron number, as in stretched molecular ions A2+_2^{+} and in solid transition metal oxides. We develop an exact-exchange theory and an exchange-hole sum rule that explain these failures and we propose a way to correct them via a local hybrid functional.Comment: 4 pages, 2 figure
    corecore