84 research outputs found
AP2γ: a new player on adult hippocampal neurogenesis regulation
Since the recognition that the mammalian brain retains the ability to generate newborn neurons with functional relevance throughout life, the matrix of molecular regulators that govern adult neurogenesis has been the focus of much interest. In a recent study published in Molecular Psychiatry, we demonstrate Activating Protein 2γ (AP2γ), a transcription factor previously implicated in cell fate determination in the developing cortex, as a novel player in the regulation of glutamatergic neurogenesis in the adult hippocampus. Using distinct experimental approaches, we showed that AP2γ is specifically present in a subpopulation of transient amplifying progenitors, where it acts as a crucial promoter of proliferation and differentiation of adult-born glutamatergic granule neurons. Strikingly, deficiency of AP2γ in the adult brain compromises the generation of new glutamatergic neurons, with impact on the function of cortico-limbic circuits. Here, we share our view on how AP2γ integrates the transcriptional orchestration of glutamatergic neurogenesis in the adult hippocampus, and consequently, how it emerges as a novel molecular candidate to study the translation of environmental pressures into alterations of brain neuroplasticity in homeostatic, but also in neuropathological contexts.Bial Foundation (427/14); Northern Portugal Regional Operational Programme (NORTE
2020); European Regional Development Fund (FEDER) (projects NORTE-01-0145-FEDER-000013 e NORTE-01-0145-FEDER-000023); Competitiveness Factors Operational Programme (COMPETE)info:eu-repo/semantics/publishedVersio
Protein kinase activity of phosphoinositide 3-kinase regulates cytokine-dependent cell survival
Extent: 14 p.The dual specificity protein/lipid kinase, phosphoinositide 3-kinase (PI3K), promotes growth factor-mediated cell survival and is frequently deregulated in cancer. However, in contrast to canonical lipid-kinase functions, the role of PI3K protein kinase activity in regulating cell survival is unknown. We have employed a novel approach to purify and pharmacologically profile protein kinases from primary human acute myeloid leukemia (AML) cells that phosphorylate serine residues in the cytoplasmic portion of cytokine receptors to promote hemopoietic cell survival. We have isolated a kinase activity that is able to directly phosphorylate Ser585 in the cytoplasmic domain of the interleukin 3 (IL-3) and granulocyte macrophage colony stimulating factor (GM-CSF) receptors and shown it to be PI3K. Physiological concentrations of cytokine in the picomolar range were sufficient for activating the protein kinase activity of PI3K leading to Ser585 phosphorylation and hemopoietic cell survival but did not activate PI3K lipid kinase signaling or promote proliferation. Blockade of PI3K lipid signaling by expression of the pleckstrin homology of Akt1 had no significant impact on the ability of picomolar concentrations of cytokine to promote hemopoietic cell survival. Furthermore, inducible expression of a mutant form of PI3K that is defective in lipid kinase activity but retains protein kinase activity was able to promote Ser585 phosphorylation and hemopoietic cell survival in the absence of cytokine. Blockade of p110α by RNA interference or multiple independent PI3K inhibitors not only blocked Ser585 phosphorylation in cytokine-dependent cells and primary human AML blasts, but also resulted in a block in survival signaling and cell death. Our findings demonstrate a new role for the protein kinase activity of PI3K in phosphorylating the cytoplasmic tail of the GM-CSF and IL-3 receptors to selectively regulate cell survival highlighting the importance of targeting such pathways in cancer.Daniel Thomas, Jason A. Powell, Benjamin D. Green, Emma F. Barry, Yuefang Ma, Joanna Woodcock, Stephen Fitter, Andrew C.W. Zannettino, Stuart M. Pitson, Timothy P. Hughes, Angel F. Lopez, Peter R. Shepherd, Andrew H. Wei, Paul G. Ekert and Mark A. Guthridg
Differential and converging molecular mechanisms of antidepressants' action in the hippocampal dentate gyrus
Major depression is a highly prevalent, multidimensional disorder. Although several classes of antidepressants (ADs) are currently available, treatment efficacy is limited, and relapse rates are high; thus, there is a need to find better therapeutic strategies. Neuroplastic changes in brain regions such as the hippocampal dentate gyrus (DG) accompany depression and its amelioration with ADs. In this study, the unpredictable chronic mild stress (uCMS) rat model of depression was used to determine the molecular mediators of chronic stress and the targets of four ADs with different pharmacological profiles (fluoxetine, imipramine, tianeptine, and agomelatine) in the hippocampal DG. All ADs, except agomelatine, reversed the depression-like behavior and neuroplastic changes produced by uCMS. Chronic stress induced significant molecular changes that were generally reversed by fluoxetine, imipramine, and tianeptine. Fluoxetine primarily acted on neurons to reduce the expression of pro-inflammatory response genes and increased a set of genes involved in cell metabolism. Similarities were found between the molecular actions and targets of imipramine and tianeptine that activated pathways related to cellular protection. Agomelatine presented a unique profile, with pronounced effects on genes related to Rho-GTPase-related pathways in oligodendrocytes and neurons. These differential molecular signatures of ADs studied contribute to our understanding of the processes implicated in the onset and treatment of depression-like symptoms.Patricia Patricio, Antonio Mateus-Pinheiro, Monica Morais, and Nuno Dinis Alves received fellowships from the Portuguese Foundation for Science and Technology (FCT). Michal Korostynski and Marcin Piechota were funded by the POIG De-Me-Ter 3.1 and NCN 2011/03/D/NZ3/01686 grants. This study was co-funded by the Life and Health Sciences Research Institute (ICVS) and ON. 2-O NOVO NORTE-North Portugal Regional Operational Programme 2007/2013, of the National Strategic Reference Framework (NSRF) 2007/ 2013, through the European Regional Development Fund (ERDF) and by the SwitchBox Consortium (Contract FP7-Health-F2-2010-259772 from the European Union). The authors declare no conflict of interest
The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes
Organisms have evolved to survive rigorous environments and are not prepared to thrive in a world of caloric excess and sedentary behavior. A realization that physical exercise (or lack of it) plays a pivotal role in both the pathogenesis and therapy of type 2 diabetes mellitus (t2DM) has led to the provocative concept of therapeutic exercise mimetics. A decade ago, we attempted to simulate the beneficial effects of exercise by treating t2DM patients with 3 weeks of daily hyperthermia, induced by hot tub immersion. The short-term intervention had remarkable success, with a 1 % drop in HbA1, a trend toward weight loss, and improvement in diabetic neuropathic symptoms. An explanation for the beneficial effects of exercise and hyperthermia centers upon their ability to induce the cellular stress response (the heat shock response) and restore cellular homeostasis. Impaired stress response precedes major metabolic defects associated with t2DM and may be a near seminal event in the pathogenesis of the disease, tipping the balance from health into disease. Heat shock protein inducers share metabolic pathways associated with exercise with activation of AMPK, PGC1-a, and sirtuins. Diabetic therapies that induce the stress response, whether via heat, bioactive compounds, or genetic manipulation, improve or prevent all of the morbidities and comorbidities associated with the disease. The agents reduce insulin resistance, inflammatory cytokines, visceral adiposity, and body weight while increasing mitochondrial activity, normalizing membrane structure and lipid composition, and preserving organ function. Therapies restoring the stress response can re-tip the balance from disease into health and address the multifaceted defects associated with the disease
- …