50 research outputs found

    SOD1 Is Essential for the Viability of DT40 Cells and Nuclear SOD1 Functions as a Guardian of Genomic DNA

    Get PDF
    Reactive oxygen species (ROSs) are produced during normal cellular metabolism, particularly by respiration in mitochondria, and these ROSs are considered to cause oxidative damage to macromolecules, including DNA. In our previous paper, we found no indication that depletion of mitochondrial superoxide dismutase, SOD2, resulted in an increase in DNA damage. In this paper, we examined SOD1, which is distributed in the cytoplasm, nucleus, and mitochondrial intermembrane space. We generated conditional SOD1 knockout cells from chicken DT40 cells and analyzed their phenotypes. The results revealed that SOD1 was essential for viability and that depletion of SOD1, especially nuclear SOD1, increased sister chromatid exchange (SCE) frequency, suggesting that superoxide is generated in or near the nucleus and that nuclear SOD1 functions as a guardian of the genome. Furthermore, we found that ascorbic acid could offset the defects caused by SOD1 depletion, including cell lethality and increases in SCE frequency and apurinic/apyrimidinic sites

    Protective roles of ascorbic acid in oxidative stress induced by depletion of superoxide dismutase in vertebrate cells.

    Get PDF
    Superoxide dismutases (SODs) are antioxidant proteins that convert superoxide to hydrogen peroxide. In vertebrate cells, SOD1 is mainly present in the cytoplasm, with small levels also found in the nucleus and mitochondrial intermembrane space, and SOD2 is present in the mitochondrial matrix. Previously, the authors conditionally disrupted the SOD1 or SOD2 gene in DT40 cells and found that depletion of SOD1 caused lethality, while depletion of SOD2 led to growth retardation. The observations from previous work showed that the lethality observed in SOD1-depleted cells was completely rescued by ascorbic acid. Ascorbic acid is a water-soluble antioxidant present in biological fluids; however, the exact target for its antioxidant effects is not known. In this study, the authors demonstrated that ascorbic acid offset growth defects observed in SOD2-depleted cells and also lowered mitochondrial superoxide to physiological levels in both SOD1- or SOD2-depleted cells. Moreover, depletion of SOD1 or SOD2 resulted in the accumulation of intracellular oxidative stress, and this increased oxidative stress was reduced by ascorbic acid. Taken together, this study suggests that ascorbic acid can be applied as a nontoxic antioxidant that mimics the functions of cytoplasmic and mitochondrial SODs

    Adverse effect of mild temperature hyperthermia combined with hexamethylenetetramine compared to its effect combined with tirapazamine in the treatment of solid tumors

    Get PDF
    This study aimed to assess the effect on solid tumors of mild temperature hyperthermia (MTH) combined with hexamethylenetetramine (HMTA) or tirapazamine (TPZ). Squamous cell carcinoma (SCC VII) tumor-bearing mice were continuously administered 5-bromo-2′-deoxyuridine (BrdU) to label intratumor proliferating (P) cells. Mice received HMTA or TPZ through intraperitoneal single or subcutaneous continuous administration, with or without MTH (40°C, 60 min), followed or not by γ-ray irradiation or cisplatin treatment. After HMTA or TPZ administration without γ-ray irradiation or cisplatin treatment, immediately after γ-ray irradiation, or 1 h after cisplatin treatment, the response of quiescent (Q) cells was assessed in terms of micronucleus frequency using immunofluorescence staining for BrdU. The response of the total (P + Q) tumor cells was determined based on a comparison with non-BrdU-treated tumors. Without MTH, HMTA and TPZ had a nearly equal radiosensitizing and cisplatin sensitivity-enhancing effect on both total and Q cells. With MTH, radio- and cisplatin-sensitizing effects by HMTA were reduced, particularly in the Q cells. In contrast, the enhancing effects of TPZ were increased, particularly in the Q cells. Continuous administration of HMTA and TPZ resulted in higher radio- and cisplatin-sensitizing effects than intraperitoneal single administration. In terms of tumor cytotoxicity as a whole, including Q cells, the administration of γ-ray irradiation or cisplatin treatment combined with continuous HMTA administration is promising, taking into account the clinical use of HMTA. However, MTH should not be combined with HMTA administration

    Usefulness of hexamethylenetetramine in combination with chemotherapy using free and pegylated liposomal doxorubicin in vivo, referring to the effect on quiescent cells

    Get PDF
    SCC VII tumor-bearing mice were continuously given 5-bromo-2'-deoxyuridine (BrdU) to label all intratumor proliferating (P) cells. They received hexamethylenetetramine (HMTA) either once intraperitoneally or continuously subcutaneously together with chemotherapy using intraperitoneally administered free doxorubicin (DXR) or intravenously injected pegylated liposomal doxorubicin (PLD). One hour after the free DXR loading or 24 h after the PLD loading, the response of intratumor quiescent (Q) cells was assessed in terms of the micronucleus frequency using immunofluorescence staining for BrdU. The response of the total (P + Q) tumor cell population was determined from the tumors not treated with BrdU. Encapsulation of DXR into pegylated liposomes significantly enhanced cytotoxicity, especially in Q cells. HMTA, especially when administered continuously, efficiently increased the sensitivity to DXR, particularly in Q cells. The increase in sensitivity on the continuous rather than single administration of HMTA was a little clearer in the total cell population than in Q cells. DXR's encapsulation into pegylated liposomes and combination with HMTA, particularly when administered continuously, apparently reduced the difference in sensitivity to free DXR between the total and Q cell populations. In terms of the tumor cell-killing effect as a whole, including Q cells, the encapsulation of DXR into pegylated liposomes and combination with HMTA, particularly through continuous administration, are very promising, taking into account that HMTA has been used clinically

    Interplay between DNA polymerases β and λ in repair of oxidation DNA damage in chicken DT40 cells

    Get PDF
    DNA polymerase λ (Pol λ) is a DNA polymerase β (Pol β)-like enzyme with both DNA synthetic and 5'-deoxyribose-5'-phosphate lyase domains. Resent biochemical studies implicated Pol λ as a backup enzyme to Pol ß in the mammalian base excision repair (BER) pathway. To examine the interrelationship between Pol λ and Pol ß in BER of DNA damage in living cells, we disrupted the genes for both enzymes either singly or in combination in the chicken DT40 cell line and then characterized BER phenotypes. Disruption of the genes for both polymerases caused hypersensitivity to H2O2-induced cytotoxicity, whereas the effect of disruption of either polymerase alone was only modest. Similarly, BER capacity in cells after H2O2 exposure was lower in Pol β−/−/Pol λ−/− cells than in Pol β−/−, wild-type and Pol λ−/− cells, which were equivalent. These results suggest that these polymerases can complement for one another in counteracting oxidative DNA damage. Similar results were obtained in assays for in vitro BER capacity using cell extracts. With MMS-induced cytotoxicity, there was no significant effect on either survival or BER capacity from Pol λ gene disruption. A strong hypersensitivity and reduction in BER capacity was observed for Pol β−/−/Pol λ−/− and Pol β−/− cells, suggesting that Pol β had a dominant role in counteracting alkylation DNA damage in this cell system

    Dysregulation of Gene Expression in the Artificial Human Trisomy Cells of Chromosome 8 Associated with Transformed Cell Phenotypes

    Get PDF
    A change in chromosome number, known as aneuploidy, is a common characteristic of cancer. Aneuploidy disrupts gene expression in human cancer cells and immortalized human epithelial cells, but not in normal human cells. However, the relationship between aneuploidy and cancer remains unclear. To study the effects of aneuploidy in normal human cells, we generated artificial cells of human primary fibroblast having three chromosome 8 (trisomy 8 cells) by using microcell-mediated chromosome transfer technique. In addition to decreased proliferation, the trisomy 8 cells lost contact inhibition and reproliferated after exhibiting senescence-like characteristics that are typical of transformed cells. Furthermore, the trisomy 8 cells exhibited chromosome instability, and the overall gene expression profile based on microarray analyses was significantly different from that of diploid human primary fibroblasts. Our data suggest that aneuploidy, even a single chromosome gain, can be introduced into normal human cells and causes, in some cases, a partial cancer phenotype due to a disruption in overall gene expression

    Establishment and Characterization of a Hypocatalasemic Mouse Cell Strain

    Get PDF
    Contact-inhibited catalase-deficient fibroblast cell strain has been established from the homozygous b hypocatalasemic C3H/Cs^b mutant mouse. This cell strain has low level of catalase enzyme activity and has normal level of enzyme activities of both glutathione peroxidase and superoxide dismutase. Catalase-deficient C3H/Cs^b mutant cell strain is markedly more sensitive to the toxicity of hydrogen peroxide compared to wild-type C3H/Cs^a cell strain. In addition, mutant cell strain is sensitive to X-rays and near-UV compared to wild-type cell strain, but shows the same sensitivities to topoisomerase II inhibitors, adriamycin and 4\u27-(9-acridinylamino) methanesulfon-m-anisidide (m-AMSA), and the DNA cross-linking agents, cis-diamminedichloroplatinum (II) (cis-Pt) and trans-diamminedichloroplatinum (II) (trans-Pt). These cell strains will be of use in the study of the roles which catalase plays in the intracellular prevention of DNA damage induced by oxidative stress
    corecore