51,880 research outputs found
Stability of ferromagnetism in the Hubbard model on the kagom\'e lattice
The Hubbard model on the kagom\'e lattice has highly degenerate ground states
(the flat lowest band) in the corresponding single-electron problem and
exhibits the so-called flat-band ferromagnetism in the many-electron ground
states as was found by Mielke. Here we study the model obtained by adding extra
hopping terms to the above model. The lowest single-electron band becomes
dispersive, and there is no band gap between the lowest band and the other
band. We prove that, at half-filling of the lowest band, the ground states of
this perturbed model remain saturated ferromagnetic if the lowest band is
nearly flat.Comment: 4 pages, 1 figur
Disk wind feedback from high-mass protostars
We perform a sequence of 3D magnetohydrodynamic (MHD) simulations of the
outflow-core interaction for a massive protostar forming via collapse of an
initial cloud core of . This allows us to characterize the
properties of disk wind driven outflows from massive protostars, which can
allow testing of different massive star formation theories. It also enables us
to assess quantitatively the impact of outflow feedback on protostellar core
morphology and overall star formation efficiency. We find that the opening
angle of the flow increases with increasing protostellar mass, in agreement
with a simple semi-analytic model. Once the protostar reaches
the outflow's opening angle is so wide that it has blown
away most of the envelope, thereby nearly ending its own accretion. We thus
find an overall star formation efficiency of , similar to that
expected from low-mass protostellar cores. Our simulation results therefore
indicate that the MHD disk wind outflow is the dominant feedback mechanism for
helping to shape the stellar initial mass function from a given prestellar core
mass function.Comment: Accepted for publication in Ap
Outflow-Confined HII regions. II. The Early Break-Out Phase
In this series of papers, we model the formation and evolution of the
photoionized region and its observational signatures during massive star
formation. Here we focus on the early break out of the photoionized region into
the outflow cavity. Using results of 3-D magnetohydrodynamic-outflow
simulations and protostellar evolution calculations, we perform post-processing
radiative-transfer. The photoionized region first appears at a protostellar
mass of 10Msun in our fiducial model, and is confined to within 10-100AU by the
dense inner outflow, similar to some observed very small hypercompact HII
regions. Since the ionizing luminosity of the massive protostar increases
dramatically as Kelvin-Helmholz (KH) contraction proceeds, the photoionized
region breaks out to the entire outflow region in <10,000yr. Accordingly, the
radio free-free emission brightens significantly in this stage. In our fiducial
model, the radio luminosity at 10 GHz changes from 0.1 mJy kpc2 at m=11Msun to
100 mJy kpc2 at 16Msun, while the infrared luminosity increases by less than a
factor of two. The radio spectral index also changes in the break-out phase
from the optically thick value of 2 to the partially optically thin value of
0.6. Additionally, we demonstrate that short-timescale variation in free-free
flux would be induced by an accretion burst. The outflow density is enhanced in
the accretion burst phase, which leads to a smaller ionized region and weaker
free-free emission. The radio luminosity may decrease by one order of magnitude
during such bursts, while the infrared luminosity is much less affected, since
internal protostellar luminosity dominates over accretion luminosity after KH
contraction starts. Such variability may be observable on timescales as short
10-100 yr, if accretion bursts are driven by disk instabilities.Comment: 9 pages, 5 figures, accepted for publication in Ap
Bifurcation scenario to Nikolaevskii turbulence in small systems
We show that the chaos in Kuramoto-Sivashinsky equation occurs through
period-doubling cascade (Feigenbaum scenario), in contrast, the chaos in
Nikolaevskii equation occurs through torus-doubling bifurcation
(Ruelle-Takens-Newhouse scenario).Comment: 8pages, 9figure
Enhanced triplet superconductivity in noncentrosymmetric systems
We study pairing symmetry of noncentrosymmetric superconductors based on the
extended Hubbard model on square lattice near half-filling, using the random
phase approximation. We show that d+f-wave pairing is favored and the triplet
f-wave state is enhanced by Rashba type spin-orbit coupling originating from
the broken inversion symmetry. The enhanced triplet superconductivity stems
from the increase of the effective interaction for the triplet pairing and the
reduction of the spin susceptibility caused by the Rashba type spin-orbit
coupling which lead to the increase of the triplet component and the
destruction of the singlet one, respectively.Comment: 5 pages, 5 figure
Charge transport in two dimensional electron gas/superconductor junctions with Rashba spin-orbit coupling
We have studied the tunneling conductance in two dimensional electron gas /
insulator / superconductor junctions in the presence of Rashba spin-orbit
coupling (RSOC). It is found that for low insulating barrier the tunneling
conductance is suppressed by the RSOC while for high insulating barrier it is
almost independent of the RSOC. We also find the reentrant behavior of the
conductance at zero voltage as a function of RSOC for intermediate insulating
barrier strength. The results are essentially different from those predicted in
ferromagnet / superconductor junctions. The present derivation of the
conductance is applicable to arbitrary velocity operator with off-diagonal
components.Comment: 8 pages, 6 figure
The Impact of Feedback in Massive Star Formation. II. Lower Star Formation Efficiency at Lower Metallicity
We conduct a theoretical study of the formation of massive stars over a wide
range of metallicities from 1e-5 to 1Zsun and evaluate the star formation
efficiencies (SFEs) from prestellar cloud cores taking into account multiple
feedback processes. Unlike for simple spherical accretion, in the case of disk
accretion feedback processes do not set upper limits on stellar masses. At
solar metallicity, launching of magneto-centrifugally-driven outflows is the
dominant feedback process to set SFEs, while radiation pressure, which has been
regarded to be pivotal, has only minor contribution even in the formation of
over-100Msun stars. Photoevaporation becomes significant in over-20Msun star
formation at low metallicities of <1e-2Zsun, where dust absorption of ionizing
photons is inefficient. We conclude that if initial prestellar core properties
are similar, then massive stars are rarer in extremely metal-poor environments
of 1e-5 - 1e-3Zsun. Our results give new insight into the high-mass end of the
initial mass function and its potential variation with galactic and
cosmological environments.Comment: 13 pages, 9 figures, accepted for publication in The Astrophysical
Journa
Phonon-phonon interactions in transition metals
In this paper the phonon self energy produced by anharmonicity is calculated
using second order many body perturbation theory for all bcc, fcc and hcp
transition metals. The symmetry properties of the phonon interactions are used
to obtain an expression for the self energy as a sum over irreducible triplets,
very similar to integration in the irreducible part of the Brillouin zone for
one particle properties. The results obtained for transition metals shows that
the lifetime is on the order of 10^10 s. Moreover the Peierls approximation for
the imaginary part of the self energy is shown to be reasonable for bcc and fcc
metals. For hcp metals we show that the Raman active mode decays into a pair of
acoustic phonons, their wave vector being located on a surface defined by
conservation laws.Comment: 14 pages, 3 figure
- …