906 research outputs found

    Induction of embryonal carcinoma cell differentiation by deferoxamine, a potent therapeutic iron chelator

    Get PDF
    AbstractWe investigated the effects of deferoxamine on the differentiation of embryonal carcinoma F9 cells. Deferoxamine, a widely used therapeutic agent for thalassemia and iron overload, was found to induce F9 cell differentiation and to have some unique characteristics compared with other chelators, hinokitiol and dithizone, which were previously reported to induce differentiation of these cells. This hydrophilic agent induced reversible differentiation as did sodium butyrate, whereas other chelators did not. However, morphological features of the cells after deferoxamine-induced differentiation were similar to those of cells incubated with the other chelators. The differentiation-inducing activity of deferoxamine was abolished by preincubation with Fe3+ ions, similarly to the other chelators examined. Moreover, cell proliferation was inhibited by treatment with this agent, and the numbers of cells in the colonies were reduced by apoptosis. Based on these results, we conclude that deferoxamine induces differentiation and apoptosis of F9 cells via chelation of extracellular and/or intracellular Fe3+ ions

    Evaluation of Removal Condition of Invasive Plant 'Eragrostis Curvula' by Considering Erosion Rate

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    Relationship between Cariogenic Bacteria and pH of Dental Plaque at Margin of Fixed Prostheses

    Get PDF
    Objective. The purpose of this study was to investigate whether teeth that have undergone prosthetic restoration are under conditions that promote caries recurrence. Methods. The subjects were 20 dentate adults with both a healthy tooth and an affected tooth entirely covered with a complete cast crown in the molar regions of the same arch. The pH was measured in plaque adhering to the margin of the tooth covered with a complete cast crown and adhering to the cervicobuccal area of the natural tooth. In addition, the numbers of cariogenic bacteria (mutans streptococci and lactobacilli) were measured employing the saliva test. The relationships between the number of cariogenic bacteria and plaque pH of the natural tooth and between the number of cariogenic bacteria and plaque pH of the tooth covered with a complete cast crown were investigated. Results. The plaque pH of the tooth covered with a complete cast crown decreased as the numbers of SM and LB increased. The natural tooth were also influenced by the number of SM. Conclusion. Secondary caries are likely to develop from the marginal region of the crown in the oral cavity with a high caries risk unless a preventive program is prepared and the oral environment is improved following the program

    Energy Loss and Drag in a Steady Flow through Emergent Vegetation

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchive

    Correlated electron transport through double quantum dots coupled to normal and superconducting leads

    Full text link
    We study Andreev transport through double quantum dots connected in series normal and superconducting (SC) leads, using the numerical renormalization group. The ground state of this system shows a crossover between a local Cooper-pairing singlet state and a Kondo singlet state, which is caused by the competition between the Coulomb interaction and the SC proximity. We show that the ground-state properties reflect this crossover especially for small values of the inter-dot coupling tt, while in the opposite case, for large tt, another singlet with an inter-dot character becomes dominant. We find that the conductance for the local SC singlet state has a peak with the unitary-limit value 4e2/h4e^2/h. In contrast, the Andreev reflection is suppressed in the Kondo regime by the Coulomb interaction. Furthermore, the conductance has two successive peaks in the transient region of the crossover. It is further elucidated that the gate voltage gives a different variation into the crossover. Specifically, as the energy level of the dot that is coupled to the normal lead varies, the Kondo screening cloud is deformed to a long-range singlet bond.Comment: 11 pages, 10 figure

    Interplay of Kondo and superconducting correlations in the nonequilibrium Andreev transport through a quantum dot

    Full text link
    Using the modified perturbation theory, we theoretically study the nonequilibrium Andreev transport through a quantum dot coupled to normal and superconducting leads (N-QD-S), which is strongly influenced by the Kondo and superconducting correlations. From the numerical calculation, we find that the renormalized couplings between the leads and the dot in the equilibrium states characterize the peak formation in the nonequilibrium differential conductance. In particular, in the Kondo regime, the enhancement of the Andreev transport via a Kondo resonance occurs in the differential conductance at a finite bias voltage, leading to an anomalous peak whose position is given by the renormalized parameters. In addition to the peak, we show that the energy levels of the Andreev bound states give rise to other peaks in the differential conductance in the strongly correlated N-QD-S system. All these features of the nonequilibrium transport are consistent with those in the recent experimental results [R. S. Deacon {\it et al.}, Phys. Rev. Lett. {\bf 104}, 076805 (2010); Phys. Rev. B {\bf 81}, 12308 (2010)]. We also find that the interplay of the Kondo and superconducting correlations induces an intriguing pinning effect of the Andreev resonances to the Fermi level and its counter position.Comment: 22 pages, 23 figure
    corecore