2 research outputs found
Self-force Regularization in the Schwarzschild Spacetime
We discuss the gravitational self-force on a particle in a black hole
space-time. For a point particle, the full (bare) self-force diverges. The
metric perturbation induced by a particle can be divided into two parts, the
direct part (or the S part) and the tail part (or the R part), in the harmonic
gauge, and the regularized self-force is derived from the R part which is
regular and satisfies the source-free perturbed Einstein equations. But this
formulation is abstract, so when we apply to black hole-particle systems, there
are many problems to be overcome in order to derive a concrete self-force.
These problems are roughly divided into two parts. They are the problem of
regularizing the divergent self-force, i.e., ``subtraction problem'' and the
problem of the singularity in gauge transformation, i.e., ``gauge problem''. In
this paper, we discuss these problems in the Schwarzschild background and
report some recent progress.Comment: 34 pages, 2 figures, submitted to CQG, special volume for Radiation
Reaction (CAPRA7
Orbit optimization for ASTROD-GW and its time delay interferometry with two arms using CGC ephemeris
ASTROD-GW (ASTROD [Astrodynamical Space Test of Relativity using Optical
Devices] optimized for Gravitation Wave detection) is an optimization of ASTROD
to focus on the goal of detection of gravitation waves. The detection
sensitivity is shifted 52 times toward larger wavelength compared to that of
LISA. The mission orbits of the 3 spacecraft forming a nearly equilateral
triangular array are chosen to be near the Sun-Earth Lagrange points L3, L4 and
L5. The 3 spacecraft range interferometrically with one another with arm length
about 260 million kilometers. In order to attain the requisite sensitivity for
ASTROD-GW, laser frequency noise must be suppressed below the secondary noises
such as the optical path noise, acceleration noise etc. For suppressing laser
frequency noise, we need to use time delay interferometry (TDI) to match the
two different optical paths (times of travel). Since planets and other
solar-system bodies perturb the orbits of ASTROD-GW spacecraft and affect the
(TDI), we simulate the time delay numerically using CGC 2.7 ephemeris
framework. To conform to the ASTROD-GW planning, we work out a set of 20-year
optimized mission orbits of ASTROD-GW spacecraft starting at June 21, 2028, and
calculate the residual optical path differences in the first and second
generation TDI for one-detector case. In our optimized mission orbits for 20
years, changes of arm length are less than 0.0003 AU; the relative Doppler
velocities are less than 3m/s. All the second generation TDI for one-detector
case satisfies the ASTROD-GW requirement.Comment: 17 pages, 7 figures, 1 tabl