9 research outputs found
Caffeoylquinic Acids Are Major Constituents with Potent Anti-Influenza Effects in Brazilian Green Propolis Water Extract
Influenza A viral infections reached pandemic levels in 1918, 1957, 1968, and, most recently, in 2009 with the emergence of the swine-origin H1N1 influenza virus. The development of novel therapeutics or prophylactics for influenza virus infection is urgently needed. We examined the evaluation of the anti-influenza virus (A/WSN/33 (H1N1)) activity of Brazilian green propolis water extract (PWE) and its constituents by cell viability and real-time PCR assays. Our findings showed strong evidence that PWE has an anti-influenza effect and demonstrate that caffeoylquinic acids are the active anti-influenza components of PWE. Furthermore, we have found that the amount of viral RNA per cell remained unchanged even in the presence of PWE, suggesting that PWE has no direct impact on the influenza virus but may have a cytoprotective activity by affecting internal cellular process. These findings indicate that caffeoylquinic acids are the active anti-influenza components of PWE. Above findings might facilitate the prophylactic application of natural products and the realization of novel anti-influenza drugs based on caffeoylquinic acids, as well as further the understanding of cytoprotective intracellular mechanisms in influenza virus-infected cells
3,4-Dicaffeoylquinic Acid, a Major Constituent of Brazilian Propolis, Increases TRAIL Expression and Extends the Lifetimes of Mice Infected with the Influenza A Virus
Brazilian green propolis water extract (PWE) and its chemical components, caffeoylquinic acids, such as 3,4-dicaffeoylquinic acid (3,4-diCQA), act against the influenza A virus (IAV) without influencing the viral components. Here, we evaluated the anti-IAV activities of these compounds in vivo. PWE or PEE (Brazilian green propolis ethanol extract) at a dose of 200 mg/kg was orally administered to Balb/c mice that had been inoculated with IAV strain A/WSN/33. The lifetimes of the PWE-treated mice were significantly extended compared to the untreated mice. Moreover, oral administration of 3,4-diCQA, a constituent of PWE, at a dose of 50 mg/kg had a stronger effect than PWE itself. We found that the amount of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mRNA in the mice that were administered 3,4-diCQA was significantly increased compared to the control group, while H1N1 hemagglutinin (HA) mRNA was slightly decreased. These data indicate that PWE, PEE or 3,4-diCQA possesses a novel and unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL
Evaluating Maize Drought and Wet Stress in a Converted Japanese Paddy Field Using a SWAP Model
Japanese government recommend farmers to cultivate upland crops in paddy fields (“converted fields”) to suppress the overproduction of rice. Converted fields are subject to excessively wet and dry conditions that reduce the yield of non-rice crops. Drought and wet stresses are critical to crop growth within specific growth periods. To provide data for use in mitigating crop yield reduction, we evaluated drought and wet stresses in maize (Zea mays L.). A SWAP (soil–water–atmosphere–plant) model was applied to a converted maize field. Observations were carried out in 2019 and 2018 for model calibration and validation. Thereafter, we evaluated the water stress of maize in 2019 (actual conditions) and at a tillage depth 11 cm deeper (scenario conditions). We found that (1) drought and wet stresses occurred within the relevant critical growth periods under actual conditions; (2) in the critical periods, the drought and wet stresses under scenario conditions were 33%–75% and 10%–82%, respectively, of those under actual conditions; (3) water stress at depths of 10 and 20 cm was lower under the scenario conditions than under the actual conditions. These results indicate that deeper tillage may mitigate both drought and wet stresses and can be used to reduce water stress damage in converted fields