4,262 research outputs found

    Magnetic phase diagram of cubic perovskites SrMn_1-xFe_xO_3

    Full text link
    We combine the results of magnetic and transport measurements with Mossbauer spectroscopy and room-temperature diffraction data to construct the magnetic phase diagram of the new family of cubic perovskite manganites SrMn_1-xFe_xO_3. We have found antiferromagnetic ordering for lightly and heavily Fe-substituted material, while intermediate substitution leads to spin-glass behavior. Near the SrMn_0.5Fe_0.5O_3 composition these two types of ordering are found to coexist and affect one another. The spin glass behavior may be caused by competing ferro- and antiferromagnetic interactions among Mn^4+ and observed Fe^3+ and Fe^5+ ions.Comment: 8 pages, 10 figures, revtex, accepted to Phys. Rev.

    Search for two-neutrino double electron capture on 124^{124}Xe with the XMASS-I detector

    Full text link
    Double electron capture is a rare nuclear decay process in which two orbital electrons are captured simultaneously in the same nucleus. Measurement of its two-neutrino mode would provide a new reference for the calculation of nuclear matrix elements whereas observation of its neutrinoless mode would demonstrate lepton number violation. A search for two-neutrino double electron capture on 124^{124}Xe is performed using 165.9 days of data collected with the XMASS-I liquid xenon detector. No significant excess above background was observed and we set a lower limit on the half-life as 4.7×10214.7 \times 10^{21} years at 90% confidence level. The obtained limit has ruled out parts of some theoretical expectations. We obtain a lower limit on the 126^{126}Xe two-neutrino double electron capture half-life of 4.3×10214.3 \times 10^{21} years at 90% confidence level as well.Comment: 6 pages, 3 figures, accepted for publication in Physics Letters

    Random-mass Dirac fermions in an imaginary vector potential: Delocalization transition and localization length

    Full text link
    One dimensional system of Dirac fermions with a random-varying mass is studied by the transfer-matrix methods which we developed recently. We investigate the effects of nonlocal correlation of the spatial-varying Dirac mass on the delocalization transition. Especially we numerically calculate both the "typical" and "mean" localization lengths as a function of energy and the correlation length of the random mass. To this end we introduce an imaginary vector potential as suggested by Hatano and Nelson and solve the eigenvalue problem. Numerical calculations are in good agreement with the results of the analytical calculations.Comment: 4 page

    Search for solar axions in XMASS, a large liquid-xenon detector

    Get PDF
    XMASS, a low-background, large liquid-xenon detector, was used to search for solar axions that would be produced by bremsstrahlung and Compton effects in the Sun. With an exposure of 5.6ton days of liquid xenon, the model-independent limit on the coupling for mass \ll 1keV is gaee<5.4×1011|g_{aee}|< 5.4\times 10^{-11} (90% C.L.), which is a factor of two stronger than the existing experimental limit. The bounds on the axion masses for the DFSZ and KSVZ axion models are 1.9 and 250eV, respectively. In the mass range of 10-40keV, this study produced the most stringent limit, which is better than that previously derived from astrophysical arguments regarding the Sun to date

    Microtubules in Bacteria: Ancient Tubulins Build a Five-Protofilament Homolog of the Eukaryotic Cytoskeleton

    Get PDF
    Microtubules play crucial roles in cytokinesis, transport, and motility, and are therefore superb targets for anti-cancer drugs. All tubulins evolved from a common ancestor they share with the distantly related bacterial cell division protein FtsZ, but while eukaryotic tubulins evolved into highly conserved microtubule-forming heterodimers, bacterial FtsZ presumably continued to function as single homopolymeric protofilaments as it does today. Microtubules have not previously been found in bacteria, and we lack insight into their evolution from the tubulin/FtsZ ancestor. Using electron cryomicroscopy, here we show that the tubulin homologs BtubA and BtubB form microtubules in bacteria and suggest these be referred to as “bacterial microtubules” (bMTs). bMTs share important features with their eukaryotic counterparts, such as straight protofilaments and similar protofilament interactions. bMTs are composed of only five protofilaments, however, instead of the 13 typical in eukaryotes. These and other results suggest that rather than being derived from modern eukaryotic tubulin, BtubA and BtubB arose from early tubulin intermediates that formed small microtubules. Since we show that bacterial microtubules can be produced in abundance in vitro without chaperones, they should be useful tools for tubulin research and drug screening
    corecore