24,200 research outputs found
Anisotropy and Ising-like transition of the S=5/2 two-dimensional Heisenberg antiferromagnet Mn-formate di-Urea
Recently reported measurements of specific heat on the compound Mn-formate
di-Urea (Mn-f-2U) by Takeda et al. [Phys. Rev. B 63, 024425 (2001)] are
considered. As a model to describe the overall thermodynamic behavior of such
compound, the easy-axis two-dimensional Heisenberg antiferromagnet is proposed
and studied by means of the 'pure quantum self-consistent harmonic
approximation' (PQSCHA). In particular it is shown that, when the temperature
decreases, the compound exhibits a crossover from 2D-Heisenberg to 2D-Ising
behavior, followed by a 2D-Ising-like phase transition, whose location allows
to get a reliable estimate of the easy-axis anisotropy driving the transition
itself. Below the critical temperature T_N=3.77 K, the specific heat is well
described by the two-dimensional easy-axis model down to a temperature T*=1.47
K where a T^3-law sets in, possibly marking a low-temperature crossover of
magnetic fluctuations from two to three dimensions.Comment: 3 pages, 2 figures, 47th Annual Conference on Magnetism and Magnetic
Materials (Tampa, FL, USA, 11-15/11/2002
Location of the Multicritical Point for the Ising Spin Glass on the Triangular and Hexagonal Lattices
A conjecture is given for the exact location of the multicritical point in
the phase diagram of the +/- J Ising model on the triangular lattice. The
result p_c=0.8358058 agrees well with a recent numerical estimate. From this
value, it is possible to derive a comparable conjecture for the exact location
of the multicritical point for the hexagonal lattice, p_c=0.9327041, again in
excellent agreement with a numerical study. The method is a variant of duality
transformation to relate the triangular lattice directly with its dual
triangular lattice without recourse to the hexagonal lattice, in conjunction
with the replica method.Comment: 9 pages, 1 figure; Minor corrections in notatio
Chemical potential shift in La(1-x)Sr(x)MnO(3): Photoemission test of the phase separation scenario
We have studied the chemical potential shift in La(1-x)Sr(x)MnO(3) as a
function of doped hole concentration by core-level x-ray photoemission. The
shift is monotonous, which means that there is no electronic phase separation
on a macroscopic scale, whereas it is consistent with the nano-meter scale
cluster formation induced by chemical disorder. Comparison of the observed
shift with the shift deduced from the electronic specific heat indicates that
hole doping in La(1-x)Sr(x)MnO(3) is well described by the rigid-band picture.
In particular no mass enhancement toward the metal-insulator boundary was
implied by the chemical potential shift, consistent with the electronic
specific heat data.Comment: 7 pages, 3 figures, to be published in Europhysics Letter
Statistical mechanical analysis of the linear vector channel in digital communication
A statistical mechanical framework to analyze linear vector channel models in
digital wireless communication is proposed for a large system. The framework is
a generalization of that proposed for code-division multiple-access systems in
Europhys. Lett. 76 (2006) 1193 and enables the analysis of the system in which
the elements of the channel transfer matrix are statistically correlated with
each other. The significance of the proposed scheme is demonstrated by
assessing the performance of an existing model of multi-input multi-output
communication systems.Comment: 15 pages, 2 figure
Eccentricities of Planets in Binary Systems
The most puzzling property of the extrasolar planets discovered by recent
radial velocity surveys is their high orbital eccentricities, which are very
difficult to explain within our current theoretical paradigm for planet
formation. Current data reveal that at least 25% of these planets, including
some with particularly high eccentricities, are orbiting a component of a
binary star system. The presence of a distant companion can cause significant
secular perturbations in the orbit of a planet. At high relative inclinations,
large-amplitude, periodic eccentricity perturbations can occur. These are known
as "Kozai cycles" and their amplitude is purely dependent on the relative
orbital inclination. Assuming that every planet host star also has a (possibly
unseen, e.g., substellar) distant companion, with reasonable distributions of
orbital parameters and masses, we determine the resulting eccentricity
distribution of planets and compare it to observations? We find that
perturbations from a binary companion always appear to produce an excess of
planets with both very high (e>0.6) and very low (e<0.1) eccentricities. The
paucity of near-circular orbits in the observed sample implies that at least
one additional mechanism must be increasing eccentricities. On the other hand,
the overproduction of very high eccentricities observed in our models could be
combined with plausible circularization mechanisms (e.g., friction from
residual gas) to create more planets with intermediate eccentricities
(e=0.1-0.6).Comment: 8 pages, to appear in "Close Binaries in the 21st Century: New
Opportunities and Challenges", ed. A. Gimenez et al. (Springer
- …
