20,575 research outputs found

    Planetary Systems in Binaries. I. Dynamical Classification

    Full text link
    Many recent observational studies have concluded that planetary systems commonly exist in multiple-star systems. At least ~20% of the known extrasolar planetary systems are associated with one or more stellar companions. The orbits of stellar binaries hosting planetary systems are typically wider than 100 AU and often highly inclined with respect to the planetary orbits. The effect of secular perturbations from such an inclined binary orbit on a coupled system of planets, however, is little understood theoretically. In this paper we investigate various dynamical classes of double-planet systems in binaries through numerical integrations and we provide an analytic framework based on secular perturbation theories. Differential nodal precession of the planets is the key property that separates two distinct dynamical classes of multiple planets in binaries: (1) dynamically-rigid systems in which the orbital planes of planets precess in concert as if they were embedded in a rigid disk, and (2) weakly-coupled systems in which the mutual inclination angle between initially coplanar planets grows to large values on secular timescales. In the latter case, the quadrupole perturbation from the outer planet induces additional Kozai cycles and causes the orbital eccentricity of the inner planet to oscillate with large amplitudes. The cyclic angular momentum transfer from a stellar companion propagating inward through planets can significantly alter the orbital properties of the inner planet on shorter timescales. This perturbation propagation mechanism may offer important constraints on the presence of additional planets in known single-planet systems in binaries.Comment: 14 pages, 14 figures, to appear in Ap

    Chemical potential shift in La(1-x)Sr(x)MnO(3): Photoemission test of the phase separation scenario

    Full text link
    We have studied the chemical potential shift in La(1-x)Sr(x)MnO(3) as a function of doped hole concentration by core-level x-ray photoemission. The shift is monotonous, which means that there is no electronic phase separation on a macroscopic scale, whereas it is consistent with the nano-meter scale cluster formation induced by chemical disorder. Comparison of the observed shift with the shift deduced from the electronic specific heat indicates that hole doping in La(1-x)Sr(x)MnO(3) is well described by the rigid-band picture. In particular no mass enhancement toward the metal-insulator boundary was implied by the chemical potential shift, consistent with the electronic specific heat data.Comment: 7 pages, 3 figures, to be published in Europhysics Letter

    Anisotropy and Ising-like transition of the S=5/2 two-dimensional Heisenberg antiferromagnet Mn-formate di-Urea

    Full text link
    Recently reported measurements of specific heat on the compound Mn-formate di-Urea (Mn-f-2U) by Takeda et al. [Phys. Rev. B 63, 024425 (2001)] are considered. As a model to describe the overall thermodynamic behavior of such compound, the easy-axis two-dimensional Heisenberg antiferromagnet is proposed and studied by means of the 'pure quantum self-consistent harmonic approximation' (PQSCHA). In particular it is shown that, when the temperature decreases, the compound exhibits a crossover from 2D-Heisenberg to 2D-Ising behavior, followed by a 2D-Ising-like phase transition, whose location allows to get a reliable estimate of the easy-axis anisotropy driving the transition itself. Below the critical temperature T_N=3.77 K, the specific heat is well described by the two-dimensional easy-axis model down to a temperature T*=1.47 K where a T^3-law sets in, possibly marking a low-temperature crossover of magnetic fluctuations from two to three dimensions.Comment: 3 pages, 2 figures, 47th Annual Conference on Magnetism and Magnetic Materials (Tampa, FL, USA, 11-15/11/2002

    Behavior and phytoavailability of radiocaesium in surface soil

    Get PDF
    Session 1. Environmental Disaster caused by Earthquake

    Effects of Ram-Pressure from Intracluster Medium on the Star Formation Rate of Disk Galaxies in Clusters of Galaxies

    Get PDF
    Using a simple model of molecular cloud evolution, we have quantitatively estimated the change of star formation rate (SFR) of a disk galaxy falling radially into the potential well of a cluster of galaxies. The SFR is affected by the ram-pressure from the intracluster medium (ICM). As the galaxy approaches the cluster center, the SFR increases to twice the initial value, at most, in a cluster with high gas density and deep potential well, or with a central pressure of 102cm3keV\sim 10^{-2} cm^{-3} keV because the ram-pressure compresses the molecular gas of the galaxy. However, this increase does not affect the color of the galaxy significantly. Further into the central region of the cluster (1\lesssim 1 Mpc from the center), the SFR of the disk component drops rapidly due to the effect of ram-pressure stripping. This makes the color of the galaxy redder and makes the disk dark. These effects may explain the observed color, morphology distribution and evolution of galaxies in high-redshift clusters. By contrast, in a cluster with low gas density and shallow potential well, or the central pressure of 103cm3keV\sim 10^{-3} cm^{-3} keV, the SFR of a radially infalling galaxy changes less significantly, because neither ram-pressure compression nor stripping is effective. Therefore, the color of galaxies in poor clusters is as blue as that of field galaxies, if other environmental effects such as galaxy-galaxy interaction are not effective. The predictions of the model are compared with observations.Comment: 19 pages, 9 figures, to appear in Ap
    corecore