241 research outputs found

    Characterization of lignin-derived products from various lignocellulosics as treated by semi-flow hot-compressed water

    Get PDF
    To elucidate the decomposition behaviors of lignin from different taxonomic groups, five different lignocellulosics were treated with hot-compressed water (230 °C/10 MPa/15 min) to fractionate lignins into water-soluble portions, precipitates, and insoluble residues. The lignin-derived products in each fraction were characterized and compared. The delignification of monocotyledons [nipa palm (Nypa fruticans) frond, rice (Oryza sativa) straw, and corn (Zea mays) cob] was more extensive than that achieved for Japanese cedar (Cryptomeria japonica, gymnosperm) and Japanese beech (Fagus crenata, dicotyledon angiosperm). The water-soluble portions contained lignin monomers like coniferyl alcohol and phenolic acids, while the precipitates contained higher molecular weight lignin with high content of ether-type linkages. Lignin in the insoluble residues was rich in condensed-type structures. In all five lignocellulosics, ether-type linkages were preferentially cleaved, while condensed-type lignin showed resistance to hot-compressed water. In the monocotyledons, lignin–carbohydrate complexes were cleaved and gave lignins that had higher molecular weights than those eluted from the woods. These differences would facilitate the delignification in monocotyledons. Such information provides useful information for efficient utilization of various lignocellulosics

    Characterization of three tissue fractions in corn (Zea mays) cob

    Get PDF
    Corn (Zea mays) cob is composed of three tissue fractions, chaff, woody ring, and pith, with dry weight percentages of 21.1%, 77.5%, and 1.4%, respectively. In this study, the cell wall components in these tissue fractions were characterized to examine their tissue morphology. The chemical compositions in the three fractions were relatively similar, and hemicellulose was the main component. Through sugar composition analysis, hemicellulose was mainly composed of xylan in all fractions, whereas the proportion of arabinose and galactose was different in the woody ring. From the alkaline nitrobenzene oxidation analysis, lignin in all fractions was composed of guaiacyl, syringyl, and p-hydroxyphenyl lignins, whereas their ratios varied in the three fractions. Furthermore, the amounts of cinnamic acids such as ferulic and p-coumaric acids, which are associated with corn lignin, were also different among the three fractions. With respect to the tissue morphology, the component cells in the three fractions were totally different each other. Furthermore, from the ultraviolet microspectrophotometry of each morphological region in the three tissue fractions, lignin concentration and distribution of cinnamic acids were different from one morphological region to another. The differences in chemical composition and lignin structures influence the decomposition behaviors in various treatments; thus, this information provides a clue to promote efficient utilization of corn cob into value-added chemicals

    Influence of Proteins on the Lignin Decomposition Behavior of Japanese Cedar (Cryptomeria japonica) Wood by Supercritical Methanol Treatment

    Get PDF
    The effect of adding protein on the decomposition behavior of lignin in Japanese cedar under supercritical methanol conditions (270 °C/27 MPa) was studied. The Klason method was used to detect the lignin content in the insoluble residue following to a 30 min treatment. Adding either an animal (bovine serum albumin) or plant (soy) protein enhanced delignification from 50 to 65% of the lignin-based wt %. This result was attributed to enhanced lignin depolymerization owing to inhibited lignin recondensation and/or the suppressed formation of polysaccharide-derived char via reactions between the protein and polysaccharides. Although the solubilization of lignin was promoted and the yield of lignin-derived low-molecular-weight compounds increased, the selectivity of major monomers such as coniferyl alcohol (CA) and γ-methylated CA decreased. The addition of proteins has a substantial impact on the decomposition behavior of cell wall components under supercritical methanol conditions. This information provides insights into the use of protein-rich lignocelluloses

    Success of Crizotinib Combined with Whole-Brain Radiotherapy for Brain Metastases in a Patient with Anaplastic Lymphoma Kinase Rearrangement-Positive Non-Small-Cell Lung Cancer

    Get PDF
    Although crizotinib shows marked antitumor activity in anaplastic lymphoma kinase (ALK) rearrangement-positive non-small-cell lung cancer (NSCLC) patients, all treated patients ultimately develop resistance to this drug. Isolated central nervous system failure without progression at extracranial sites is a common progression pattern in ALK rearrangement-positive NSCLC patients treated with crizotinib. Here, we report the success of crizotinib combined with whole-brain radiotherapy in an ALK rearrangement-positive NSCLC patient who developed leptomeningeal carcinomatosis and progression of multiple brain metastases. Additionally, we focused on the mechanism involved by examining the plasma and cerebrospinal fluid concentrations of crizotinib in the present case

    Parkinson's Disease and Cancer

    Get PDF
    Epidemiological evidence suggests a reduced incidence of many common types of cancers in individuals with Parkinson's disease (PD). Parkinson's disease and cancer are two diseases that result from an excessive signaling by one of two forces driving cells to opposite directions. PD results from the excessive death of dopaminergic neurons in the substantia nigra pars compacta (SNc) in the brain, while uncontrolled growth is the key property of cancer. Parkinson's disease is a complex disorder, probably due in most of the cases to the interaction of environment and genes. Many genes responsible for familial forms of PD are supposed to have a supportive role in regulating or maintaining the cell cycle, a fact that allows us to assume their interaction in tumorigenesis. Understanding the nature of these processes may help researchers find new and more efficacious therapeutic approaches for both diseases

    Bortezomib in combination with celecoxib in patients with advanced solid tumors: a phase I trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>COX-2 inhibitors, such as celecoxib, and ubiquitin-proteasome pathway inhibitors, such as bortezomib, can down-regulate NF-κB, a transcription factor implicated in tumor growth. The objective of this study was to determine the maximum tolerated dose and dose-limiting toxicities of bortezomib in combination with celecoxib in patients with advanced solid tumors.</p> <p>Methods</p> <p>Patients received escalating doses of bortezomib either on a weekly schedule (days 1, 8, 15, 22, and 29 repeated every 42 days) or on a twice-weekly administration schedule (days 1, 4, 8, and 11 repeated every 21 days), in combination with escalating doses of celecoxib twice daily throughout the study period from 200 mg to 400 mg twice daily.</p> <p>Results</p> <p>No dose-limiting toxicity was observed during the study period. Two patients had stable disease lasting for four and five months each, and sixteen patients developed progressive disease.</p> <p>Conclusion</p> <p>The combination of bortezomib and celecoxib was well tolerated, without dose limiting toxicities observed throughout the dosing ranges tested, and will be studied further at the highest dose levels investigated.</p> <p>Trial registration number</p> <p>NCT00290680.</p

    Ror2 modulates the canonical Wnt signaling in lung epithelial cells through cooperation with Fzd2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Wnt signaling is mediated through 1) the beta-catenin dependent canonical pathway and, 2) the beta-catenin independent pathways. Multiple receptors, including Fzds, Lrps, Ror2 and Ryk, are involved in Wnt signaling. Ror2 is a single-span transmembrane receptor-tyrosine kinase (RTK). The functions of Ror2 in mediating the non-canonical Wnt signaling have been well established. The role of Ror2 in canonical Wnt signaling is not fully understood.</p> <p>Results</p> <p>Here we report that Ror2 also positively modulates Wnt3a-activated canonical signaling in a lung carcinoma, H441 cell line. This activity of Ror2 is dependent on cooperative interactions with Fzd2 but not Fzd7. In addition, Ror2-mediated enhancement of canonical signaling requires the extracellular CRD, but not the intracellular PRD domain of Ror2. We further provide evidence that the positive effect of Ror2 on canonical Wnt signaling is inhibited by Dkk1 and Krm1 suggesting that Ror2 enhances an Lrp-dependent STF response.</p> <p>Conclusion</p> <p>The current study demonstrates the function of Ror2 in modulating canonical Wnt signaling. These findings support a functional scheme whereby regulation of Wnt signaling is achieved by cooperative functions of multiple mediators.</p

    Overexpression of optineurin E50K disrupts Rab8 interaction and leads to a progressive retinal degeneration in mice

    Get PDF
    Glaucoma is one of the leading causes of bilateral blindness affecting nearly 8 million people worldwide. Glaucoma is characterized by a progressive loss of retinal ganglion cells (RGCs) and is often associated with elevated intraocular pressure (IOP). However, patients with normal tension glaucoma (NTG), a subtype of primary open-angle glaucoma (POAG), develop the disease without IOP elevation. The molecular pathways leading to the pathology of NTG and POAG are still unclear. Here, we describe the phenotypic characteristics of transgenic mice overexpressing wild-type (Wt) or mutated optineurin (Optn). Mutations E50K, H486R and Optn with a deletion of the first (amino acids 153–174) or second (amino acids 426–461) leucine zipper were used for overexpression. After 16 months, histological abnormalities were exclusively observed in the retina of E50K mutant mice with loss of RGCs and connecting synapses in the peripheral retina leading to a thinning of the nerve fiber layer at the optic nerve head at normal IOP. E50K mice also showed massive apoptosis and degeneration of entire retina, leading to approximately a 28% reduction of the retina thickness. At the molecular level, introduction of the E50K mutation disrupts the interaction between Optn and Rab8 GTPase, a protein involved in the regulation of vesicle transport from Golgi to plasma membrane. Wt Optn and an active GTP-bound form of Rab8 complex were localized at the Golgi complex. These data suggest that alternation of the Optn sequence can initiate significant retinal degeneration in mice
    corecore