345 research outputs found
On-chip cavity quantum phonodynamics with an acceptor qubit in silicon
We describe a chip-based, solid-state analogue of cavity-QED utilizing
acoustic phonons instead of photons. We show how long-lived and tunable
acceptor impurity states in silicon nanomechanical cavities can play the role
of a matter non-linearity for coherent phonons just as, e.g., the Josephson
qubit plays in circuit-QED. Both strong coupling (number of Rabi oscillations ~
100) and strong dispersive coupling (0.1-2 MHz) regimes can be reached in
cavities in the 1-20 GHz range, enabling the control of single phonons,
phonon-phonon interactions, dispersive phonon readout of the acceptor qubit,
and compatibility with other optomechanical components such as phonon-photon
translators. We predict explicit experimental signatures of the acceptor-cavity
system.Comment: 6 pages, 2 figures, PDFLaTeX. New version improves clarit
Phonitons as a sound-based analogue of cavity quantum electrodynamics
A quantum mechanical superposition of a long-lived, localized phonon and a
matter excitation is described. We identify a realization in strained silicon:
a low-lying donor transition (P or Li) driven solely by acoustic phonons at
wavelengths where high-Q phonon cavities can be built. This phonon-matter
resonance is shown to enter the strongly coupled regime where the "vacuum" Rabi
frequency exceeds the spontaneous phonon emission into non-cavity modes, phonon
leakage from the cavity, and phonon anharmonicity and scattering. We introduce
a micropillar distributed Bragg reflector Si/Ge cavity, where Q=10^5-10^6 and
mode volumes V<=25*lambda^3 are reachable. These results indicate that single
or many-body devices based on these systems are experimentally realizable.Comment: Published PRL version. Note that the previous arXiv version has more
commentary, figures, etc. Also see http://research.tahan.com
Decoherence of electron spin qubits in Si-based quantum computers
Direct phonon spin-lattice relaxation of an electron qubit bound by a donor
impurity or quantum dot in SiGe heterostructures is investigated. The aim is to
evaluate the importance of decoherence from this mechanism in several important
solid-state quantum computer designs operating at low temperatures. We
calculate the relaxation rate as a function of [100] uniaxial strain,
temperature, magnetic field, and silicon/germanium content for Si:P bound
electrons. The quantum dot potential is much smoother, leading to smaller
splittings of the valley degeneracies. We have estimated these splittings in
order to obtain upper bounds for the relaxation rate. In general, we find that
the relaxation rate is strongly decreased by uniaxial compressive strain in a
SiGe-Si-SiGe quantum well, making this strain an important positive design
feature. Ge in high concentrations (particularly over 85%) increases the rate,
making Si-rich materials preferable. We conclude that SiGe bound electron
qubits must meet certain conditions to minimize decoherence but that
spin-phonon relaxation does not rule out the solid-state implementation of
error-tolerant quantum computing.Comment: 8 figures. To appear in PRB-July 2002. Revisions include: some
references added/corrected, several typos fixed, a few things clarified.
Nothing dramati
Effects of Preoperative Sublingual Misoprostol on Uterine Tone during Isoflurane Anesthesia for Cesarean Section
SummaryBackground and objectivesMisoprostol would reduce the uterine bleeding after cesarean delivery without harmful effects on either mother or baby. We aimed to evaluate the effects of preoperative misoprostol on maternal blood loss, uterine tone, and the need for additional oxytocin after cesarean delivery under isoflurane anesthesia.MethodsAfter ethical approval, 366 patients scheduled for elective cesarean delivery were randomly allocated to receive either sublingual misoprostol 400μg (n=179) or placebo tablet (n=187) after intubation. Anesthesia was maintained with 0.5–0.7 MAC isoflurane with nitrous oxide. All patients received intravenous infusion of 10IU of oxytocin after placental delivery. Perioperative estimated blood loss, uterine tone, need for supplementary oxytocin, hematocrit, Apgar scores at 1 and 5 min and adverse effects were recorded.ResultsAfter induction, patients receiving sublingual misoprostol had significant less perioperative estimated blood loss (202±383.1 vs. 708±204.3mL, p<0.001), need for oxytocin (p<0.001), higher hematocrit levels (p<0.001) and uterine tone (p<0.02). The incidence of shivering was higher in the misoprostol group (p=0.04). There were no differences between the two groups as regarding Apgar scores, nausea and vomiting, gastrointestinal disturbances and pyrexia.ConclusionPreoperative administration of sublingual misoprostol 400μg is safe and effective in attenuating the maternal bleeding and uterine atony from isoflurane anesthesia for cesarean delivery
Theory of nuclear induced spectral diffusion: Spin decoherence of phosphorus donors in Si and GaAs quantum dots
We propose a model for spectral diffusion of localized spins in
semiconductors due to the dipolar fluctuations of lattice nuclear spins. Each
nuclear spin flip-flop is assumed to be independent, the rate for this process
being calculated by a method of moments. Our calculated spin decoherence time
ms for donor electron spins in Si:P is a factor of two longer than
spin echo decay measurements. For P nuclear spins we show that spectral
diffusion is well into the motional narrowing regime. The calculation for GaAs
quantum dots gives s depending on the quantum dot size. Our
theory indicates that nuclear induced spectral diffusion should not be a
serious problem in developing spin-based semiconductor quantum computer
architectures.Comment: 15 pages, 9 figures. Accepted for publication in Phys. Rev.
Time course of collagen peak in bile duct-ligated rats
<p>Abstract</p> <p>Background</p> <p>One of the most useful experimental fibrogenesis models is the "bile duct-ligated rats". Our aim was to investigate the quantitative hepatic collagen content by two different methods during the different stages of hepatic fibrosis in bile duct-ligated rats on a weekly basis. We questioned whether the 1-wk or 4-wk bile duct-ligated model is suitable in animal fibrogenesis trials.</p> <p>Methods</p> <p>Of the 53 male Wistar rats, 8 (Group 0) were used as a healthy control group. Bile duct ligation (BDL) had been performed in the rest. Bile duct-ligated rates were sacrificed 7 days later in group 1 (10 rats), 14 days later in group 2 (9 rats), 21 days later in group 3(9 rats) and 28 days later in group 4 (9 rats). Eight rats underwent sham-operation (Sham). Hepatic collagen measurements as well as serum levels of liver enzymes and function tests were all analysed.</p> <p>Results</p> <p>The peak level of collagen was observed biochemically and histomorphometricly at the end of third week (P < 0.001 and P < 0.05). Suprisingly, collagen levels had decreased with the course of time such as at the end of fourth week (P < 0.01 and P < 0.05).</p> <p>Conclusion</p> <p>We have shown that fibrosis in bile duct-ligated rats is transient, i.e. reverses spontaneously after 3 weeks. This contrasts any situation in patients where hepatic fibrosis is progressive and irreversible as countless studies performed by many investigators in the same animal model.</p
Nanotechnology and Society: A discussion-based undergraduate course
Nanotechnology has emerged as a broad, exciting, yet ill-defined field of
scientific research and technological innovation. There are important questions
about the technology's potential economic, social, and environmental
implications. We discuss an undergraduate course on nanoscience and
nanotechnology for students from a wide range of disciplines, including the
natural and social sciences, the humanities, and engineering. The course
explores these questions and the broader place of technology in contemporary
societies. The course is built around active learning methods and seeks to
develop the students' critical thinking skills, written and verbal
communication abilities, and general knowledge of nanoscience and
nanoengineering concepts. Continuous assessment was used to gain information
about the effectiveness of class discussions and enhancement of student
understanding of the interaction between nanotechnology and society.Comment: 7 pages, 1 figure. Edited and shortened for readability. Visit
http://www.tahan.com/charlie/nanosociety/course201/ for more informatio
Developing expert international consensus statements for opioid-sparing analgesia using the Delphi method
Introduction: The management of postoperative pain in anaesthesia is evolving with a deeper understanding of associating multiple modalities and analgesic medications. However, the motivations and barriers regarding the adoption of opioid-sparing analgesia are not well known. Methods: We designed a modified Delphi survey to explore the perspectives and opinions of expert panellists with regard to opioid-sparing multimodal analgesia. 29 anaesthetists underwent an evolving three-round questionnaire to determine the level of agreement on certain aspects of multimodal analgesia, with the last round deciding if each statement was a priority. Results: The results were aggregated and a consensus, defined as achievement of over 75% on the Likert scale, was reached for five out of eight statements. The panellists agreed there was a strong body of evidence supporting opioid-sparing multimodal analgesia. However, there existed multiple barriers to widespread adoption, foremost the lack of training and education, as well as the reluctance to change existing practices. Practical issues such as cost effectiveness, increased workload, or the lack of supply of anaesthetic agents were not perceived to be as critical in preventing adoption. Conclusion: Thus, a focus on developing specific guidelines for multimodal analgesia and addressing gaps in education may improve the adoption of opioid-sparing analgesia
Coulomb Blockade in a Silicon/Silicon-Germanium Two-Dimensional Electron Gas Quantum Dot
We report the fabrication and electrical characterization of a single
electron transistor in a modulation doped silicon/silicon-germanium
heterostructure. The quantum dot is fabricated by electron beam lithography and
subsequent reactive ion etching. The dot potential and electron density are
modified by laterally defined side gates in the plane of the dot. Low
temperature measurements show Coulomb blockade with a single electron charging
energy of 3.2 meV.Comment: Typos corrected; to appear in Appl. Phys. Let
- …