64 research outputs found
Efficacy of 23-valent pneumococcal vaccine in preventing pneumonia and improving survival in nursing home residents: double blind, randomised and placebo controlled trial
Objective To determine the efficacy of a 23-valent pneumococcal polysaccharide vaccine in people at high risk of pneumococcal pneumonia
Novel fluorinated derivative of curcumin negatively regulates thioredoxin-interacting protein expression in retinal pigment epithelial and macrophage cells.
Thioredoxin-interacting protein (TXNIP) has multiple disease-associated functions including inducing oxidative stress by inhibiting the anti-oxidant and thiol reducing activity of thioredoxin (TRX), reducing cellular glucose transport, and is a component of the activated inflammasome complex. Increased expression of TXNIP is encountered in diabetic conditions of high glucose. Curcumin and chemical derivatives have multiple therapeutic properties as anti-inflammatories, anti-oxidants, amyloid aggregation inhibitors and modulate a number of cellular signaling pathways. Using a fluorinated-derivative of curcumin (designated Shiga-Y6), we showed significant inhibition of TXNIP mRNA and protein expression, and induction of TRX mRNA and protein in ARPE-19 retinal pigment epithelial cells and THP-1-derived macrophages, while the non-fluorinated structural equivalent (Shiga-Y52) and native curcumin did not show these same effects. Shiga-Y6 was effective in reducing high glucose, endoplasmic reticulum stress-induced TXNIP in ARPE-19 cells, and reducing lipopolysaccharide and endoplasmic stress-induced proinflammatory gene expression in THP-1 macrophages. Moreover, TXNIP-knockdown experiments showed that the anti-inflammatory effect of Shiga-Y6 in LPS-stimulated THP-1 macrophages was TXNIP-independent
A Fluorine-19 Magnetic Resonance Probe, Shiga-Y5, Downregulates Thioredoxin-Interacting Protein Expression in the Brain of a Mouse Model of Alzheimer\u27s Disease.
Thioredoxin-interacting protein (TXNIP) is involved in multiple disease-associated functions related to oxidative stress, especially by inhibiting the anti-oxidant- and thiol-reducing activity of thioredoxin (TXN). Shiga-Y5 (SY5), a fluorine-19 magnetic resonance probe for detecting amyloid-β deposition in the brain, previously showed therapeutic effects in a mouse model of Alzheimer\u27s disease; however, the mechanism of action of SY5 remains unclear. SY5 passes the blood-brain barrier and then undergoes hydrolysis to produce a derivative, Shiga-Y6 (SY6), which is a TXNIP-negative regulator. Therefore, this study investigates the therapeutic role of SY5 as the prodrug of SY6 in the thioredoxin system in the brain of a mouse model of Alzheimer\u27s disease. The intraperitoneal injection of SY5 significantly inhibited TXNIP mRNA (p = 0.0072) and protein expression (p = 0.0143) induced in the brain of APP/PS1 mice. In contrast, the levels of TXN mRNA (p = 0.0285) and protein (p = 0.0039) in the brain of APP/PS1 mice were increased after the injection of SY5. The ratio of TXN to TXNIP, which was decreased (p = 0.0131) in the brain of APP/PS1 mice, was significantly increased (p = 0.0072) after the injection of SY5. These results suggest that SY5 acts as a prodrug of SY6 in targeting the thioredoxin system and could be a potential therapeutic compound in oxidative stress-related diseases in the brain
Fluorine-19 Magnetic Resonance Imaging for Detection of Amyloid β Oligomers Using a Keto Form of Curcumin Derivative in a Mouse Model of Alzheimer\u27s Disease.
Recent evidence suggests that the formation of soluble amyloid β (Aβ) aggregates with high toxicity, such as oligomers and protofibrils, is a key event that causes Alzheimer\u27s disease (AD). However, understanding the pathophysiological role of such soluble Aβ aggregates in the brain in vivo could be difficult due to the lack of a clinically available method to detect, visualize, and quantify soluble Aβ aggregates in the brain. We had synthesized a novel fluorinated curcumin derivative with a fixed keto form, named as Shiga-Y51, which exhibited high selectivity to Aβ oligomers in vitro. In this study, we investigated the in vivo detection of Aβ oligomers by fluorine-19 (19F) magnetic resonance imaging (MRI) using Shiga-Y51 in an APP/PS1 double transgenic mouse model of AD. Significantly high levels of 19F signals were detected in the upper forebrain region of APP/PS1 mice compared with wild-type mice. Moreover, the highest levels of Aβ oligomers were detected in the upper forebrain region of APP/PS1 mice in enzyme-linked immunosorbent assay. These findings suggested that 19F-MRI using Shiga-Y51 detected Aβ oligomers in the in vivo brain. Therefore, 19F-MRI using Shiga-Y51 with a 7 T MR scanner could be a powerful tool for imaging Aβ oligomers in the brain
Curcumin tautomerization in the mechanism of pentameric amyloid- β42 oligomers disassembly.
Alzheimer\u27s disease is a neurologic disorder characterized by the accumulation of extracellular deposits of amyloid-β (Aβ) fibrils in the brain of patients. The key etiologic agent in Alzheimer\u27s disease is not known; however oligomeric Aβ appears detrimental to neuronal functions and increases Aβ fibrils deposition. Previous research has shown that curcumin, a phenolic pigment of turmeric, has an effect on Aβ assemblies, although the mechanism remains unclear. In this study, we demonstrate that curcumin disassembles pentameric oligomers made from synthetic Aβ42 peptides (pentameric oAβ42), using atomic force microscopy imaging followed by Gaussian analysis. Since curcumin shows keto-enol structural isomerism (tautomerism), the effect of keto-enol tautomerism on its disassembly was investigated. We have found that curcumin derivatives capable of keto-enol tautomerization also disassemble pentameric oAβ42, while, a curcumin derivative incapable of tautomerization did not affect the integrity of pentameric oAβ42. These experimental findings indicate that keto-enol tautomerism plays an essential role in the disassembly. We propose a mechanism for oAβ42 disassembly by curcumin based on molecular dynamics calculations of the tautomerism. When curcumin and its derivatives bind to the hydrophobic regions of oAβ42, the keto-form changes predominantly to the enol-form; this transition is associated with structural (twisting, planarization and rigidification) and potential energy changes that give curcumin enough force to act as a torsion molecular-spring that eventually disassembles pentameric oAβ42. This proposed mechanism sheds new light on keto-enol tautomerism as a relevant chemical feature for designing such novel therapeutic drugs that target protein aggregation
Visualization of Amyloid Oligomers in the Brain of Patients with Alzheimer's Disease
In the pathogenesis of Alzheimer's disease (AD), highly neurotoxic amyloid-β (Aβ) oligomers appear early, they are thus considered to be deeply involved in the onset of Alzheimer's disease. However, Aβ oligomer visualization is challenging in human tissues due to their multiple forms (e.g., low- and high-molecular-weight oligomers, including protofibrils) as well as their tendency to rapidly change forms and aggregate. In this review, we present two visualization approaches for Aβ oligomers in tissues: an immunohistochemical (using the monoclonal antibody TxCo1 against toxic Aβ oligomer conformers) and imaging mass spectrometry using the small chemical Shiga-Y51 that specifically binds Aβ oligomers. TxCo1 immunohistochemistry revealed Aβ oligomer distributions in postmortem human brains with AD. Using Shiga-Y51, imaging mass spectrometry revealed Aβ oligomer distributions in the brain of a transgenic mouse model for AD. These two methods would potentially contribute to elucidating the pathological mechanisms underlying AD.journal articl
Keto form of curcumin derivatives strongly binds to Aβ oligomers but not fibrils.
The accumulation of β-amyloid (Aβ) aggregates in the brain occurs early in the progression of Alzheimer\u27s disease (AD), and non-fibrillar soluble Aβ oligomers are particularly neurotoxic. During binding to Aβ fibrils, curcumin, which can exist in an equilibrium state between its keto and enol tautomers, exists predominantly in the enol form, and binding activity of the keto form to Aβ fibrils is much weaker. Here we described the strong binding activity the keto form of curcumin derivative Shiga-Y51 shows for Aβ oligomers and its scant affinity for Aβ fibrils. Furthermore, with imaging mass spectrometry we revealed the blood-brain barrier permeability of Shiga-Y51 and its accumulation in the cerebral cortex and the hippocampus, where Aβ oligomers were mainly localized, in a mouse model of AD. The keto form of curcumin derivatives like Shiga-Y51 could be promising seed compounds to develop imaging probes and therapeutic agents targeting Aβ oligomers in the brain
Abnormal phospholipids distribution in the prefrontal cortex from a patient with schizophrenia revealed by matrix-assisted laser desorption/ionization imaging mass spectrometry
Schizophrenia is one of the major psychiatric disorders, and lipids have focused on the important roles in this disorder. In fact, lipids related to various functions in the brain. Previous studies have indicated that phospholipids, particularly ones containing polyunsaturated fatty acyl residues, are deficient in postmortem brains from patients with schizophrenia. However, due to the difficulties in handling human postmortem brains, particularly the large size and complex structures of the human brain, there is little agreement regarding the qualitative and quantitative abnormalities of phospholipids in brains from patients with schizophrenia, particularly if corresponding brain regions are not used. In this study, to overcome these problems, we employed matrix-assisted laser desorption/ionization imaging mass spectrometry (IMS), enabling direct microregion analysis of phospholipids in the postmortem brain of a patient with schizophrenia via brain sections prepared on glass slides. With integration of traditional histochemical examination, we could analyze regions of interest in the brain at the micrometric level. We found abnormal phospholipid distributions within internal brain structures, namely, the frontal cortex and occipital cortex. IMS revealed abnormal distributions of phosphatidylcholine molecular species particularly in the cortical layer of frontal cortex region. In addition, the combined use of liquid chromatography/electrospray ionization tandem mass spectrometry strengthened the capability for identification of numerous lipid molecular species. Our results are expected to further elucidate various metabolic processes in the neural system
- …