233 research outputs found

    Hybrid metric-Palatini Higgs inflation

    Full text link
    We propose an extension of the Higgs inflation to the hybrid metric-Palatini gravity, where we introduce non-minimal couplings between Higgs and both the metric-type and the Palatini-type Ricci scalars. We study the inflationary phenomenology of our model and find that slow-roll inflation can be realized in the large-field regime, giving the observationally favored predictions. In particular, the scalar spectral index exhibits an attractor behavior to ns0.964n_{\mathrm{s}}\sim 0.964, while the tensor-to-scalar ratio can take an arbitrary value depending on the non-minimal coupling parameters, with the metric-Higgs limit r103r\sim10^{-3} being the maximum. We also investigate the unitarity property of our model. As the ultraviolet (UV) cutoff as a low-energy effective field theory (EFT) of this model is significantly lower than the Planck scale due to a strong curvature of field-space, we consider a possible candidate of UV-extended theories with an additional scalar field introduced so as to flatten the field-space in five-dimension. While the field-space can be flatten completely and this approach can lead to a weakly-coupled EFT, we gain an implication that Planck-scale EFT can be only realized in the limit of metric-Higgs inflation. We also discuss generalizations of the model up to mass-dimension four.Comment: 17 pages, 1 figur

    Water transport model during CAPD: Determination of parameters

    Get PDF
    Water transport model during CAPD: Determination of parameters. To minimize the total amount of glucose required for removing the same volume of water as a bolus, a continuous infusion of glucose during CAPD was proposed and studied. Both a computer simulation of water transport through the peritoneal membrane and in vivo assessment with rats were carried out to evaluate the feasibility of the newly proposed mathematical model in which lymphatic drainage of dialysate from the peritoneal cavity to lymphatic system was considered in addition to conventional water transport. Mass transport area coefficients (KA) of 0.041 to 0.063 ml/min/100 g body wt and 0.045 to 0.066 ml/min/100 g body wt were measured for glucose and urea during CAPD with male Wistar rats. Hydraulic conductivity of peritoneal membrane (Lc) was 7.9 × 10-5 to 1.5 × 10-4 ml/min/mm Hg/100 g body wt, which was calculated by a linear relationship between volume and osmotic pressure. Simulated water transport model using determined parameters indicated that the ratio of lymphatic transport to convective transport would be changeable in CAPD with glucose infusion at varying infusion rates, while up to 16% of the glucose uptake could be reduced compared with that of the common CAPD at the same dwell time

    Left atrial dissection after aortic valve replacement

    Get PDF

    Chemopreventive effects and anti-tumorigenic mechanisms of Actinidia arguta, known as sarunashi in Japan toward 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)- induced lung tumorigenesis in a/J mouse

    Get PDF
    Background Previously, we reported the inhibitory effect of Actinidia arguta juice, known as sarunashi juice (sar-j) in Japan, on mutagenesis, inflammation, and mouse skin tumorigenesis. The components of A. arguta responsible for the anti-mutagenic effects were identified to be water-soluble, heat-labile phenolic compounds. We proposed isoquercetin (isoQ) as a candidate anticarcinogenic component. In this study, we sought to investigate the chemopreventive effects of A. arguta juice and isoQ on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in A/J mice, and identify the possible mechanisms underlying the anti-tumorigenic effects of A. arguta. Results The number of tumor nodules per mouse lung in the group injected with NNK and administered A. arguta juice orally was significantly lower than that in the group injected with NNK only. Oral administration of isoQ also reduced the number of nodules in the mouse lungs. As expected, the mutagenicity of NNK and 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) detected using S. typhimurium TA1535 decreased in the presence of sar-j. However, NNK and MNNG mutagenicity detected using S. typhimurium YG7108, a strain lacking the O6-methylguanine DNA methyltransferases (ogtST and adaST) did not decrease in the presence of sar-j suggesting that sar-j may mediate its antimutagenic effect by enhancing the DNA damage repair by ogtST and adaST. Phosphorylation of Akt, with or without epidermal growth factor stimulation, in A549 cells was significantly decreased following sar-j and isoQ treatment, indicating that components in sar-j including isoQ suppressed the PI3K/AKT signaling pathways. Conclusions Sar-j and isoQ reduced NNK-induced lung tumorigenesis. Sar-j targets both the initiation and growth/progression steps during carcinogenesis, specifically via anti-mutagenesis, stimulation of alkyl DNA adduct repair, and suppression of Akt-mediated growth signaling. IsoQ might contribute in part to the biological effects of sar-j via suppression of Akt phosphorylation, but it may not be the main active ingredient

    Bone microarchitectural analysis using ultra-high-resolution CT in tiger vertebra and human tibia

    Get PDF
    Background To reveal trends in bone microarchitectural parameters with increasing spatial resolution on ultra-high-resolution computed tomography (UHRCT) in vivo and to compare its performance with that of conventional-resolution CT (CRCT) and micro-CT ex vivo. Methods We retrospectively assessed 5 tiger vertebrae ex vivo and 16 human tibiae in vivo. Seven-pattern and four-pattern resolution imaging were performed on tiger vertebra using CRCT, UHRCT, and micro-CT, and on human tibiae using UHRCT. We measured six microarchitectural parameters: volumetric bone mineral density (vBMD), trabecular bone volume fraction (bone volume/total volume, BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation (Tb.Sp), and connectivity density (ConnD). Comparisons between different imaging resolutions were performed using Tukey or Dunnett T3 test. Results The vBMD, BV/TV, Tb.N, and ConnD parameters showed an increasing trend, while Tb.Sp showed a decreasing trend both ex vivo and in vivo. Ex vivo, UHRCT at the two highest resolutions (1024- and 2048-matrix imaging with 0.25-mm slice thickness) and CRCT showed significant differences (p <= 0.047) in vBMD (51.4 mg/cm(3) and 63.5 mg/cm(3)versus 20.8 mg/cm(3)), BV/TV (26.5% and 29.5% versus 13.8 %), Tb.N (1.3 l/mm and 1.48 l/mm versus 0.47 l/mm), and ConnD (0.52 l/mm(3) and 0.74 l/mm(3)versus 0.02 l/mm(3), respectively). In vivo, the 512- and 1024-matrix imaging with 0.25-mm slice thickness showed significant differences in Tb.N (0.38 l/mm versus 0.67 l/mm, respectively) and ConnD (0.06 l/mm(3)versus 0.22 l/mm(3), respectively). Conclusions We observed characteristic trends in microarchitectural parameters and demonstrated the potential utility of applying UHRCT for microarchitectural analysis

    Admission systolic blood pressure as a prognostic predictor of acute decompensated heart failure: A report from the KCHF registry

    Get PDF
    [Background] Admission systolic blood pressure has emerged as a predictor of postdischarge outcomes of patients with acute decompensated heart failure; however, its validity in varied clinical conditions of this patient subset is unclear. The aim of this study was to further explore the prognostic value of admission systolic blood pressure in patients with acute decompensated heart failure. [Methods] The Kyoto Congestive Heart Failure (KCHF) registry is a prospective, observational, multicenter cohort study enrolling consecutive patients with acute decompensated heart failure from 19 participating hospitals in Japan. Clinical characteristics at baseline and prognosis were examined by the following value range of admission systolic blood pressure: <100, 100–139, and ≥140 mmHg. The primary outcome measure was defined as all-cause death after discharge. Subgroup analyses were done for prior hospitalization for heart failure, hypertension, left ventricular ejection fraction, and medications at discharge. We excluded patients with acute coronary syndrome or insufficient data. [Results] We analyzed 3564 patients discharged alive out of 3804 patients hospitalized for acute decompensated heart failure. In the entire cohort, lower admission systolic blood pressure was associated with poor outcomes (1-year cumulative incidence of all-cause death: <100 mmHg, 26.8%; 100–139 mmHg, 20.2%; and ≥140 mmHg, 15.1%, p<0.001). The magnitude of the effect of lower admission systolic blood pressure for postdischarge all-cause death was greater in patients with prior hospitalization for heart failure, heart failure with reduced left ventricular ejection fraction, and β-blocker use at discharge than in those without. [Conclusions] Admission systolic blood pressure is useful for postdischarge risk stratification in patients with acute decompensated heart failure. Its magnitude of the effect as a prognostic predictor may differ across clinical conditions of patients

    The spatio-temporal structure of the Lateglacial to early Holocene transition reconstructed from the pollen record of Lake Suigetsu and its precise correlation with other key global archives:Implications for palaeoclimatology and archaeology

    Get PDF
    Leads, lags, or synchronies in climatic events among different regions are key to understanding mechanisms of climate change, as they provide insights into the causal linkages among components of the climate system. The well-studied transition from the Lateglacial to early Holocene (ca. 16–10 ka) contains several abrupt climatic shifts, making this period ideal for assessing the spatio-temporal structure of climate change. However, comparisons of timings of past climatic events among regions often remain hypothetical because site-specific age scales are not necessarily synchronised to each other. Here we present new pollen data (n = 510) and mean annual temperature reconstruction from the annually laminated sediments of Lake Suigetsu, Japan. Suigetsu's 14C dataset is an integral component of the IntCal20 radiocarbon calibration model, in which the absolute age scale is established to the highest standard. Its exceptionally high-precision chronology, along with recent advances in cosmogenic isotope studies of ice cores, enables temporally coherent comparisons among Suigetsu, Greenland, and other key proxy records across regions. We show that the onsets of the Lateglacial cold reversal (equivalent to GS-1/Younger Dryas) and the Holocene were synchronous between East Asia and the North Atlantic, whereas the Lateglacial interstadial (equivalent to GI-1/Bølling-Allerød) started ca. two centuries earlier in East Asia than in the North Atlantic. Bimodal migration (or ‘jump’) of the westerly jet between north and south of the Tibetan plateau and Himalayas may have operated as a threshold system responsible for the abruptness of the change in East and South (and possibly also West) Asia. That threshold in Asia and another major threshold in the North Atlantic, associated with switching on/off of the Atlantic meridional overturning circulation (AMOC), were crossed at different times, producing a multi-centennial asynchrony of abrupt changes, as well as a disparity of climatic modes among regions during the transitional phases. Such disparity may have disturbed zonal circulation and generated unstable climate during transitions. The intervening periods with stable climate, on the other hand, coincided with the beginnings of sedentary life and agriculture, implying that these new lifestyles and technologies were not rational unless climate was stable and thus, to a certain extent, predictable
    corecore