15 research outputs found

    Structure of the human Îș-opioid receptor in complex with JDTic

    Get PDF
    Opioid receptors mediate the actions of endogenous and exogenous opioids on many physiological processes, including the regulation of pain, respiratory drive, mood, and—in the case of Îș-opioid receptor (Îș-OR)—dysphoria and psychotomimesis. Here we report the crystal structure of the human Îș-OR in complex with the selective antagonist JDTic, arranged in parallel dimers, at 2.9 Å resolution. The structure reveals important features of the ligand-binding pocket that contribute to the high affinity and subtype selectivity of JDTic for the human Îș-OR. Modelling of other important Îș-OR-selective ligands, including the morphinan-derived antagonists norbinaltorphimine and 5â€Č-guanidinonaltrindole, and the diterpene agonist salvinorin A analogue RB-64, reveals both common and distinct features for binding these diverse chemotypes. Analysis of site-directed mutagenesis and ligand structure–activity relationships confirms the interactions observed in the crystal structure, thereby providing a molecular explanation for Îș-OR subtype selectivity, and essential insights for the design of compounds with new pharmacological properties targeting the human Îș-OR

    Autoxidation of salvinorin A under basic conditions.

    Full text link

    Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial parkinsonism-linked gene DJ-1

    No full text
    The manifestations of Parkinson's disease are caused by reduced dopaminergic innervation of the striatum. Loss-of-function mutations in the DJ-1 gene cause early-onset familial parkinsonism. To investigate a possible role for DJ-1 in the dopaminergic system, we generated a mouse model bearing a germline disruption of DJ-1. Although DJ-1(-/-) mice had normal numbers of dopaminergic neurons in the substantia nigra, evoked dopamine overflow in the striatum was markedly reduced, primarily as a result of increased reuptake. Nigral neurons lacking DJ-1 were less sensitive to the inhibitory effects of D2 autoreceptor stimulation. Corticostriatal long-term potentiation was normal in medium spiny neurons of DJ-1(-/-) mice, but long-term depression (LTD) was absent. The LTD deficit was reversed by treatment with D2 but not D1 receptor agonists. Furthermore, DJ-1(-/-) mice displayed hypoactivity in the open field. Collectively, our findings suggest an essential role for DJ-1 in dopaminergic physiology and D2 receptor-mediated functions

    Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial parkinsonism-linked gene DJ-1

    Get PDF
    The manifestations of Parkinson's disease are caused by reduced dopaminergic innervation of the striatum. Loss-of-function mutations in the DJ-1 gene cause early-onset familial parkinsonism. To investigate a possible role for DJ-1 in the dopaminergic system, we generated a mouse model bearing a germline disruption of DJ-1. Although DJ-1(-/-) mice had normal numbers of dopaminergic neurons in the substantia nigra, evoked dopamine overflow in the striatum was markedly reduced, primarily as a result of increased reuptake. Nigral neurons lacking DJ-1 were less sensitive to the inhibitory effects of D2 autoreceptor stimulation. Corticostriatal long-term potentiation was normal in medium spiny neurons of DJ-1(-/-) mice, but long-term depression (LTD) was absent. The LTD deficit was reversed by treatment with D2 but not D1 receptor agonists. Furthermore, DJ-1(-/-) mice displayed hypoactivity in the open field. Collectively, our findings suggest an essential role for DJ-1 in dopaminergic physiology and D2 receptor-mediated functions
    corecore