30 research outputs found
Invasion of ovarian cancer cells is induced by PITX2-mediated activation of TGF-β and Activin-A
Background:Most ovarian cancers are highly invasive in nature and the high burden of metastatic disease make them a leading cause of mortality among all gynaecological malignancies. The homeodomain transcription factor, PITX2 is associated with cancer in different tissues. Our previous studies demonstrated increased PITX2 expression in human ovarian tumours. Growing evidence linking activation of TGF-β pathway by homeodomain proteins prompted us to look for the possible involvement of this signalling pathway in PITX2-mediated progression of ovarian cancer.
Methods: The status of TGF-β signalling in human ovarian tissues was assessed by immunohistochemistry. The
expression level of TGFB/INHBA and other invasion-associated genes was measured by quantitative-PCR (Q-PCR)
and Western Blot after transfection/treatments with clones/reagents in normal/cancer cells. The physiological
effect of PITX2 on invasion/motility was checked by matrigel invasion and wound healing assay. The PITX2- and
activin-induced epithelial-mesenchymal transition (EMT) was evaluated by Q-PCR of respective markers and confocal/phase-contrast imaging of cells.
Results: Human ovarian tumours showed enhanced TGF-β signalling. Our study uncovers the PITX2-induced
expression of TGFB1/2/3 as well as INHBA genes (p < 0.01) followed by SMAD2/3-dependent TGF-β signalling
pathway. PITX2-induced TGF-β pathway regulated the expression of invasion-associated genes, SNAI1, CDH1
and MMP9 (p < 0.01) that accounted for enhanced motility/invasion of ovarian cancers. Snail and MMP9 acted
as important mediators of PITX2-induced invasiveness of ovarian cancer cells. PITX2 over-expression resulted in
loss of epithelial markers (p < 0.01) and gain of mesenchymal markers (p < 0.01) that contributed significantly to ovarian oncogenesis. PITX2-induced INHBA expression (p < 0.01) contributed to EMT in both normal and ovarian cancer cells.
Conclusions: Overall, our findings suggest a significant contributory role of PITX2 in promoting invasive
behaviour of ovarian cancer cells through up-regulation of TGFB/INHBA. We have also identified the previously unknown involvement of activin-A in promoting EMT. Our work provides novel mechanistic insights into the invasive behavior of ovarian cancer cells. The extension of this study have the potential for therapeutic applications in future
An Essential Role for Katanin p80 and Microtubule Severing in Male Gamete Production
Katanin is an evolutionarily conserved microtubule-severing complex implicated in multiple aspects of microtubule dynamics. Katanin consists of a p60 severing enzyme and a p80 regulatory subunit. The p80 subunit is thought to regulate complex targeting and severing activity, but its precise role remains elusive. In lower-order species, the katanin complex has been shown to modulate mitotic and female meiotic spindle dynamics and flagella development. The in vivo function of katanin p80 in mammals is unknown. Here we show that katanin p80 is essential for male fertility. Specifically, through an analysis of a mouse loss-of-function allele (the Taily line), we demonstrate that katanin p80, most likely in association with p60, has an essential role in male meiotic spindle assembly and dissolution and the removal of midbody microtubules and, thus, cytokinesis. Katanin p80 also controls the formation, function, and dissolution of a microtubule structure intimately involved in defining sperm head shaping and sperm tail formation, the manchette, and plays a role in the formation of axoneme microtubules. Perturbed katanin p80 function, as evidenced in the Taily mouse, results in male sterility characterized by decreased sperm production, sperm with abnormal head shape, and a virtual absence of progressive motility. Collectively these data demonstrate that katanin p80 serves an essential and evolutionarily conserved role in several aspects of male germ cell development
HLA-DR products are a subset of human Ia antigens.
Human Ia antigens are polymorphic cell-surface sialoglycoproteins which have restricted tissue distribution. They are bimolecular complexes of 34,000 (alpha) and 28,000 (beta) molecular weight and most of the polymorphism is found in the smaller polypeptides. They are involved in the initiation of immune responses and particular Ia antigens are associated with increased susceptibility to certain diseases. They are also the major barrier to human allogeneic tissue transplantation. Whereas serological analysis and mixed lymphocyte typing have defined three polymorphic families of Ia antigens, HLA-DR, -DC and -SB, protein sequencing results and studies with monoclonal antibodies indicate that the complexity is much greater. Thus the HLA-DR and DC specificities as defined by alloantisera, could represent groups of antigens which are controlled by HLA genes in linkage disequilibrium. Here, we have used a monoclonal antibody specific for HLA-DR2 to show that this determinant is carried by molecules which are distinct from those of the DC series and which represent 30% of the Ia antigens expressed on the cell surface of an HLA homozygous line PGF