756 research outputs found

    Numerical study of self-similar natural convection mass transfer from a rotating cone in anisotropic porous media with Stefan blowing and Navier slip

    Get PDF
    A mathematical model is presented for laminar, steady natural convection mass transfer in boundary layer flow from a rotating porous vertical cone in anisotropic high permeability porous media. The transformed boundary value problem is solved subject to prescribed surface and free stream boundary conditions with a MAPLE 17 shooting method. Validation with a Chebyshev spectral collocation method is included. The influence of tangential Darcy number, swirl Darcy number, Schmidt number, rotational parameter, momentum (velocity slip), mass slip and wall mass flux (transpiration) on the velocity and concentration distributions is evaluated in detail. The computations show that tangential and swirl velocities are enhanced generally with increasing permeability functions (i.e. Darcy parameters). Increasing spin velocity of the cone accelerates the tangential flow whereas it retards the swirl flow. An elevation in wall suction depresses both tangential and swirl flow. However, increasing injection generates acceleration in the tangential and swirl flow. With greater momentum (hydrodynamic) slip, both tangential and swirl flows are accelerated. Concentration values and Sherwood number function values are also enhanced with momentum slip, although this is only achieved for the case of wall injection. A substantial suppression in tangential velocity is induced with higher mass (solutal) slip effect for any value of injection parameter. Concentration is also depressed at the wall (cone surface) with an increase in mass slip parameter, irrespective of whether injection or suction is present. The model is relevant to spin coating operations in filtration media (in which swirling boundary layers can be controlled with porous media to deposit thin films on industrial components), flow control of mixing devices in distillation processes and also chromatographical analysis systems

    Numerical study of slip and radiative effects on magnetic Fe3O4-water-based nanofluid flow from a nonlinear stretching sheet in porous media with Soret and Dufour diffusion

    Get PDF
    Increasingly sophisticated techniques are being developed for the manufacture of functional nanomaterials. A growing interest is also developing in magnetic nanofluid coatings which contain magnetite nanoparticles suspended in a base fluid and are responsive to external magnetic fields. These nanomaterials are “smart” and their synthesis features high-temperature environments in which radiative heat transfer is present. Diffusion processes in the extruded nanomaterial sheet also feature Soret and Dufour (cross) diffusion effects. Filtration media are also utilized to control the heat, mass and momentum characteristics of extruded nanomaterials and porous media impedance effects arise. Magnetite nanofluids have also been shown to exhibit hydrodynamic wall slip which can arise due to non-adherence of the nanofluid to the boundary. Motivated by the multi-physical nature of magnetic nanomaterial manufacturing transport phenomena, in this paper, we develop a mathematical model to analyze the collective influence of hydrodynamic slip, radiative heat flux and cross-diffusion effects on transport phenomena in ferric oxide (Fe3O4-water) magnetic nanofluid flow from a nonlinear stretching porous sheet in porous media. Hydrodynamic slip is included. Porous media drag is simulated with the Darcy model. Viscous magnetohydrodynamic theory is used to simulate Lorentzian magnetic drag effects. The Rosseland diffusion flux model is employed for thermal radiative effects. A set of appropriate similarity transformation variables are deployed to convert the original partial differential boundary value problem into an ordinary differential boundary value problem. The numerical solution of the coupled, multi-degree, nonlinear problem is achieved with an efficient shooting technique in MATLAB symbolic software. The physical influences of Hartmann (magnetic) number, Prandtl number, Richardson number, Soret (thermo-diffusive) number, permeability parameter, concentration buoyancy ratio, radiation parameter, Dufour (diffuso-thermal) parameter, momentum slip parameter and Schmidt number on transport characteristics (e.g. velocity, nanoparticle concentration and temperature profiles) are investigated, visualized and presented graphically. Flow deceleration is induced with increasing Hartmann number and wall slip, whereas flow acceleration is generated with greater Richardson number and buoyancy ratio parameter. Temperatures are elevated with increasing Dufour number and radiative parameter. Concentration magnitudes are enhanced with Soret number, whereas they are depleted with greater Schmidt number. Validation of the MATLAB computations with special cases of the general model is included. Further validation with generalized differential quadrature (GDQ) is also included

    Computation of radiative Marangoni (thermocapillary) magnetohydrodynamic convection in Cu-water based nanofluid flow from a disk in porous media : smart coating simulation

    Get PDF
    With emerging applications for smart and intelligent coating systems in energy, there has been increasing activity in researching magnetic nano nanomaterial coating flows. Surface tension features significantly in such regimes, and in presence of heat transfer, Marangoni (thermocapillary) convection arises. Motivated by elaborating deeper the intrinsic transport phenomena in such systems, in this paper, a mathematical model is developed for steady radiative heat transfer and Marangoni magnetohydrodynamic (MHD) flow of Cu-water nanofluid under strong magnetic field from a disk adjacent to a porous medium. The semi-analytical Adomain Decomposition Method (ADM) is employed to solve the governing equations which are reduced into ordinary differential equation form via the Von Karman similarity transformation. Validation with a GDQ (Generalized Differential Quadrature) algorithm is included. The response in dimensionless velocity, temperature, wall heat transfer rate and shear stress is investigated for various values of the control parameters. Temperature is reduced with increasing Marangoni parameter whereas the flow is accelerated. With increasing permeability parameter temperatures are elevated. Increasing radiative flux boosts temperatures further from the disk surface. Increasing magnetic parameter strongly damps the boundary layer flow and elevates the temperatures, also eliminating temperature oscillations at lower magnetic field strengths

    Numerical solutions for axisymmetric non-Newtonian stagnation enrobing flow, heat and mass transfer with application to cylindrical pipe coating dynamics

    Get PDF
    Heat and mass transfer in variable thermal conductivity micropolar axisymmetric stagnation enrobing flow on a cylinder is studied. Numerical solutions are obtained with an optimized variational finite element procedure and also a finite difference method. Graphical variations of velocity, angular velocity, temperature and concentration are presented for the effects of Reynolds number, viscosity ratio, curvature parameter, Prandtl number and Schmidt number. Excellent agreement is obtained for both finite element method (FEM) and finite difference method (FDM) computations. Further validation is achieved with a Chebyshev spectral collocation method (SCM). Skin friction is elevated with greater Reynolds number whereas it is suppressed with increasing micropolar parameter. Heat transfer rate decreases with an increase in the thermal conductivity parameter. Temperature and thermal boundary layer thickness is reduced with increasing thermal conductivity parameter and Reynolds number. Greater Reynolds number accelerates the micro-rotation values. Higher Schmidt number reduces the mass transfer function (species concentration) values. The mathematical model is relevant to polymeric manufacturing coating (enrobing) flows

    Spectral relaxation computation of electroconductive nanofluid convection flow from a moving surface with radiative flux and magnetic induction

    Get PDF
    A theoretical model is developed for steady magnetohydrodynamic (MHD) viscous flow resulting from a moving semi-infinite flat plate in an electrically conducting nanofluid. Thermal radiation and magnetic induction effects are included in addition to thermal convective boundary conditions. Buongiorno’s two-component nanoscale model is deployed, which features Brownian motion and thermophoresis effects. The governing nonlinear boundary layer equations are converted to nonlinear ordinary differential equations by using suitable similarity transformations. The transformed system of differential equations is solved numerically, employing the Spectral relaxation method (SRM) via MATLAB R2018a software. SRM is a simple iteration scheme that does not require any evaluation of derivatives, perturbation, and linearization for solving a non-linear systems of equations. Effects of embedded parameters such as sheet velocity paramete
    corecore