35 research outputs found

    Is there a monopole problem?

    Full text link
    We investigate the high temperature behavior of SU(5) in its minimal version. We show that there exists a range of parameters of the Higgs potential for which the symmetry remains broken at high temperature, thus avoiding the phase transition that gives rise to the overproduction of monopoles . We also show that in such scenario the thermal production of monopoles can be suppressed in a wide range of parameters, keeping their number density below the cosmological limits.Comment: Latex, 12 pages, revised version as appeared in Physical Review Letters. Minor corrections, comments and two references adde

    Scattering off an SO(10) cosmic string

    Full text link
    The scattering of fermions from the abelian string arising during the phase transition SO(10)→SU(5)×Z2SO(10) \rightarrow SU(5) \times Z_2 induced by the Higgs in the 126 representation is studied. Elastic cross-sections and baryon number violating cross-sections due to the coupling to gauge fields in the core of the string are computed by both a first quantised method and a perturbative second quantised method. The elastic cross-sections are found to be Aharonov-Bohm type. However, there is a marked asymmetry between the scattering cross-sections for left and right handed fields. The catalysis cross-sections are small, depending on the grand unified scale. If cosmic strings were observed our results could help tie down the underlying gauge group.Comment: 20 page

    Vortex Rings in two Component Bose-Einstein Condensates

    Full text link
    We study the structure of the vortex core in two-component Bose-Einstein condensates. We demonstrate that the order parameter may not vanish and the symmetry may not be restored in the core of the vortex. In this case such vortices can form vortex rings known as vortons in particle physics literature. In contrast with well-studied superfluid 4He^4He, where similar vortex rings can be stable due to Magnus force only if they move, the vortex rings in two-component BECs can be stable even if they are at rest. This beautiful effect was first discussed by Witten in the cosmic string context, where it was shown that the stabilization occurs due to condensation of the second component of the field in the vortex core. This second condensate trapped in the core may carry a current along the vortex ring counteracting the effect of string tension that causes the loop to shrink. We speculate that such vortons may have been already observed in the laboratory. We also speculate that the experimental study of topological structures in BECs can provide a unique opportunity to study cosmology and astrophysics by doing laboratory experiments.Comment: 21 pages, 2 figure

    Topologically Stable Electroweak Flux Tube

    Full text link
    We show that for a large range of parameters in a SU(2)LĂ—U(1)SU(2)_L\times U(1) electroweak theory with two Higgs doublets there may exist classically stable flux tubes of Z boson magnetic field. In a limit of an extra global U~(1)\tilde U(1) symmetry, these flux-tubes become topologically stable. These results are automatically valid even if U~(1)\tilde U(1) is gauged.Comment: 10 pages, LATE

    Classical self-forces in a space with a dispiration

    Full text link
    We derive the gravitational and electrostatic self-energies of a particle at rest in the background of a cosmic dispiration (topological defect), finding that the particle may experience potential steps, well potentials or potential barriers depending on the nature of the interaction and also on certain properties of the defect. The results may turn out to be useful in cosmology and condensed matter physics.Comment: 5 pages, 4 figures, revtex4 fil

    Background Independent Quantum Mechanics and Gravity

    Full text link
    We argue that the demand of background independence in a quantum theory of gravity calls for an extension of standard geometric quantum mechanics. We discuss a possible kinematical and dynamical generalization of the latter by way of a quantum covariance of the state space. Specifically, we apply our scheme to the problem of a background independent formulation of Matrix Theory.Comment: 9 pages, LaTe

    Gravitational field around a screwed superconducting cosmic string in scalar-tensor theories

    Get PDF
    We obtain the solution that corresponds to a screwed superconducting cosmic string (SSCS) in the framework of a general scalar-tensor theory including torsion. We investigate the metric of the SSCS in Brans-Dicke theory with torsion and analyze the case without torsion. We show that in the case with torsion the space-time background presents other properties different from that in which torsion is absent. When the spin vanish, this torsion is a Ď•\phi-gradient and then it propagates outside of the string. We investigate the effect of torsion on the gravitational force and on the geodesics of a test-particle moving around the SSCS. The accretion of matter by wakes formation when a SSCS moves with speed vv is investigated. We compare our results with those obtained for cosmic strings in the framework of scalar-tensor theory.Comment: 22 pages, LaTeX, presented at the "XXII - Encontro Nacional de Fisica de Particulas e Campos", Sao Lourenco, MG, Brazi

    Dressing Up the Kink

    Full text link
    Many quantum field theoretical models possess non-trivial solutions which are stable for topological reasons. We construct a self-consistent example for a self-interacting scalar field--the quantum (or dressed) kink--using a two particle irreducible effective action in the Hartree approximation. This new solution includes quantum fluctuations determined self-consistently and nonperturbatively at the 1-loop resummed level and allowed to backreact on the classical mean-field profile. This dressed kink is static under the familiar Hartree equations for the time evolution of quantum fields. Because the quantum fluctuation spectrum is lower lying in the presence of the defect, the quantum kink has a lower rest energy than its classical counterpart. However its energy is higher than well-known strict 1-loop results, where backreaction and fluctuation self-interactions are omitted. We also show that the quantum kink exists at finite temperature and that its profile broadens as temperature is increased until it eventually disappears.Comment: 13 pages, latex, 3 eps figures; revised with yet additional references, minor rewordin

    Scaling in Numerical Simulations of Domain Walls

    Get PDF
    We study the evolution of domain wall networks appearing after phase transitions in the early Universe. They exhibit interesting dynamical scaling behaviour which is not yet well understood, and are also simple models for the more phenomenologically acceptable string networks. We have run numerical simulations in two- and three-dimensional lattices of sizes up to 4096^3. The theoretically predicted scaling solution for the wall area density A ~ 1/t is supported by the simulation results, while no evidence of a logarithmic correction reported in previous studies could be found. The energy loss mechanism appears to be direct radiation, rather than the formation and collapse of closed loops or spheres. We discuss the implications for the evolution of string networks.Comment: 7pp RevTeX, 9 eps files (including six 220kB ones

    Dynamics of tachyonic preheating after hybrid inflation

    Full text link
    We study the instability of a scalar field at the end of hybrid inflation, using both analytical techniques and numerical simulations. We improve previous studies by taking the inflaton field fully into account, and show that the range of unstable modes depends sensitively on the velocity of the inflaton field, and thereby on the Hubble rate, at the end of inflation. If topological defects are formed, their number density is determined by the shortest unstable wavelength. Finally, we show that the oscillations of the inflaton field amplify the inhomogeneities in the energy density, leading to local symmetry restoration and faster thermalization. We believe this explains why tachyonic preheating is so effective in transferring energy away from the inflaton zero mode.Comment: 12 pages, 10 figures, REVTeX. Minor changes, some references added. To appear in PR
    corecore