4 research outputs found

    Discrete exterior calculus (DEC) for the surface Navier-Stokes equation

    Full text link
    We consider a numerical approach for the incompressible surface Navier-Stokes equation. The approach is based on the covariant form and uses discrete exterior calculus (DEC) in space and a semi-implicit discretization in time. The discretization is described in detail and related to finite difference schemes on staggered grids in flat space for which we demonstrate second order convergence. We compare computational results with a vorticity-stream function approach for surfaces with genus 0 and demonstrate the interplay between topology, geometry and flow properties. Our discretization also allows to handle harmonic vector fields, which we demonstrate on a torus.Comment: 21 pages, 9 figure
    corecore