3 research outputs found

    A Farewell to Liouvillians

    Full text link
    We examine the Liouvillian approach to the quantum Hall plateau transition, as introduced recently by Sinova, Meden, and Girvin [Phys. Rev. B {\bf 62}, 2008 (2000)] and developed by Moore, Sinova and Zee [Phys. Rev. Lett. {\bf 87}, 046801 (2001)]. We show that, despite appearances to the contrary, the Liouvillian approach is not specific to the quantum mechanics of particles moving in a single Landau level: we formulate it for a general disordered single-particle Hamiltonian. We next examine the relationship between Liouvillian perturbation theory and conventional calculations of disorder-averaged products of Green functions and show that each term in Liouvillian perturbation theory corresponds to a specific contribution to the two-particle Green function. As a consequence, any Liouvillian approximation scheme may be re-expressed in the language of Green functions. We illustrate these ideas by applying Liouvillian methods, including their extension to NL>1N_L > 1 Liouvillian flavors, to random matrix ensembles, using numerical calculations for small integer NLN_L and an analytic analysis for large NLN_L. We find that behavior at NL>1N_L > 1 is different in qualitative ways from that at NL=1N_L=1. In particular, the NL=∞N_L = \infty limit expressed using Green functions generates a pathological approximation, in which two-particle correlation functions fail to factorize correctly at large separations of their energy, and exhibit spurious singularities inside the band of random matrix energy levels. We also consider the large NLN_L treatment of the quantum Hall plateau transition, showing that the same undesirable features are present there, too

    N-orbital model for a two-dimensional disordered system in a strong magnetic field

    No full text
    An N-orbital model is considered for a two-dimensional disordered system in a strong perpendicular magnetic field. The Hamiltonian is projected on the lowest Landau level. In a field theoretical formulation the large N limit result corresponds to the translationally invariant saddle point for this model. A diagrammatic expansion in powers of 1/N is performed around the large N limit. The conductivity is calculated up to order 1/N2. No mobility edge is found in this expansion. The result is consistent with the non-linear unitary σ-model and independent of magnetic field and disorder strength if the energy is measured in units of the bandwidth.Dans un champ magnétique intense, orthogonal au plan d'un système désordonné bi-dimensionnel, un modèle à N orbitales par site est considéré. L'Hamiltonien est projeté dans le niveau de Landau fondamental. Dans la limite de N grand, le résultat correspond à un col, invariant par translation, d'une théorie des champs. Le développement en puissances de 1/N est effectué diagrammatiquement et la conductivité est calculée jusqu'à l'ordre 1/N2. Dans ce développement on n'observe aucun seuil de mobilité. Le résultat est conforme au modèle σ non linéaire unitaire; il est indépendant du champ magnétique et de l'intensité du désordre si l'on exprime l'énergie en unités de la largeur de bande
    corecore