430 research outputs found
Observations of the post shock break-out emission of SN 2011dh with XMM-Newton
After the occurrence of the type cIIb SN 2011dh in the nearby spiral galaxy M
51 numerous observations were performed with different telescopes in various
bands ranging from radio to gamma-rays. We analysed the XMM-Newton and Swift
observations taken 3 to 30 days after the SN explosion to study the X-ray
spectrum of SN 2011dh. We extracted spectra from the XMM-Newton observations,
which took place ~7 and 11 days after the SN. In addition, we created
integrated Swift/XRT spectra of 3 to 10 days and 11 to 30 days. The spectra are
well fitted with a power-law spectrum absorbed with Galactic foreground
absorption. In addition, we find a harder spectral component in the first
XMM-Newton spectrum taken at t ~ 7 d. This component is also detected in the
first Swift spectrum of t = 3 - 10 d. While the persistent power-law component
can be explained as inverse Compton emission from radio synchrotron emitting
electrons, the harder component is most likely bremsstrahlung emission from the
shocked stellar wind. Therefore, the harder X-ray emission that fades away
after t ~ 10 d can be interpreted as emission from the shocked circumstellar
wind of SN 2011dh.Comment: Accepted for publication as a Research Note in Astronomy and
Astrophysic
Recommended from our members
Microwave Treatment as a Pesticide Alternative for Stored-Products
This CRADA was a continuation of earlier work with Micro-Grain, Inc. to develop power, high frequency microwave treatment process to treat insect infested grain. ORNLs role was as a subcontractor to Micro-Grain's Phase II SBIR project funded by the US Department of Agriculture. The primary objective was to develop a commercial scale prototype unit capable of treating infested grain at flow rates approaching 1 kg/sec, which is required to be viable in the grain handling industry. A flow rate of {approx} 0.12 Kg/second was demonstrated at 20 kW microwave power level with 100% kill rate. The system is capable of 200 kW however waveguide arcing due to grain dust in the waveguide limited the power to 20 kW during the tests. Development tasks performed during the project included modification of an existing high-power microwave exposure facility to uniformly process large grain samples at high flow rates and improved instrumentation to detect grain flow and uniformity. Microwave processing tasks include a series of controlled exposure tests using infested grain samples provided and analyzed by the University of Oklahoma. Grain samples were infested with red flour beetles which proved the most difficult to kill in earlier tests. Most of the samples processed resulted in quite successful kill rates and a maximum grain temperature of 46 C. The facilities utilized at ORNL are located in the Fusion Energy building (9201-2 at Y-12) and include the 28 GHz 200 kW CW high power microwave facility and microwave test equipment associated with the FED Microwave Development Laboratory in 9201-2. An improved microwave exposure chamber and grain flow control and handling equipment were designed and build as a joint effort between Micro-Grain and ORNL. A number of insect infested grain tests were successfully performed although the higher power, higher flow rates were limited by arcing in the microwave waveguide and damage to the gyrotron output window. Test results and the overall performance of the applicator system are very favorable for continued development of the concept. Further tests were performed in a large high power 2.45 GHz microwave applicator in batches. These samples were also quite effectively treated which supports the concept that a lower cost, lower frequency microwave system might be more successful due to the improved economics and simpler operation and maintenance of the low frequency system. Follow-on work is still possible however the untimely death of Steve Halverson, founder of Micro-grain, has essentially brought the development work to a close for now. Micro-Grain is being run by relatives at a low level who are not actively pursuing further funding
Theory of Two-Dimensional Josephson Arrays in a Resonant Cavity
We consider the dynamics of a two-dimensional array of underdamped Josephson
junctions placed in a single-mode resonant cavity. Starting from a well-defined
model Hamiltonian, which includes the effects of driving current and
dissipative coupling to a heat bath, we write down the Heisenberg equations of
motion for the variables of the Josephson junction and the cavity mode,
extending our previous one-dimensional model. In the limit of large numbers of
photons, these equations can be expressed as coupled differential equations and
can be solved numerically. The numerical results show many features similar to
experiment. These include (i) self-induced resonant steps (SIRS's) at voltages
V = (n hbar Omega)/(2e), where Omega is the cavity frequency, and n is
generally an integer; (ii) a threshold number N_c of active rows of junctions
above which the array is coherent; and (iii) a time-averaged cavity energy
which is quadratic in the number of active junctions, when the array is above
threshold. Some differences between the observed and calculated threshold
behavior are also observed in the simulations and discussed. In two dimensions,
we find a conspicuous polarization effect: if the cavity mode is polarized
perpendicular to the direction of current injection in a square array, it does
not couple to the array and there is no power radiated into the cavity. We
speculate that the perpendicular polarization would couple to the array, in the
presence of magnetic-field-induced frustration. Finally, when the array is
biased on a SIRS, then, for given junction parameters, the power radiated into
the array is found to vary as the square of the number of active junctions,
consistent with expectations for a coherent radiation.Comment: 11 pages, 8 eps figures, submitted to Phys. Rev
Towards Pose-Invariant 2D Face Classification for Surveillance
A key problem for "face in the crowd" recognition from existing surveillance cameras in public spaces (such as mass transit centres) is the issue of pose mismatches between probe and gallery faces. In addition to accuracy, scalability is also important, necessarily limiting the complexity of face classification algorithms. In this paper we evaluate recent approaches to the recognition of faces at relatively large pose angles from a gallery of frontal images and propose novel adaptations as well as modifications. Specifically, we compare and contrast the accuracy, robustness and speed of an Active Appearance Model (AAM) based method (where realistic frontal faces are synthesized from non-frontal probe faces) against bag-of-features methods (which are local feature approaches based on block Discrete Cosine Transforms and Gaussian Mixture Models). We show a novel approach where the AAM based technique is sped up by directly obtaining pose-robust features, allowing the omission of the computationally expensive and artefact producing image synthesis step. Additionally, we adapt a histogram-based bag-of-features technique to face classification and contrast its properties to a previously proposed direct bag-of-features method. We also show that the two bag-of-features approaches can be considerably sped up, without a loss in classification accuracy, via an approximation of the exponential function. Experiments on the FERET and PIE databases suggest that the bag-of-features techniques generally attain better performance, with significantly lower computational loads. The histogram-based bag-of-features technique is capable of achieving an average recognition accuracy of 89% for pose angles of around 25 degrees
Row-switched states in two-dimensional underdamped Josephson junction arrays
When magnetic flux moves across layered or granular superconductor
structures, the passage of vortices can take place along channels which develop
finite voltage, while the rest of the material remains in the zero-voltage
state. We present analytical studies of an example of such mixed dynamics: the
row-switched (RS) states in underdamped two-dimensional Josephson arrays,
driven by a uniform DC current under external magnetic field but neglecting
self-fields. The governing equations are cast into a compact
differential-algebraic system which describes the dynamics of an assembly of
Josephson oscillators coupled through the mesh current. We carry out a formal
perturbation expansion, and obtain the DC and AC spatial distributions of the
junction phases and induced circulating currents. We also estimate the interval
of the driving current in which a given RS state is stable. All these
analytical predictions compare well with our numerics. We then combine these
results to deduce the parameter region (in the damping coefficient versus
magnetic field plane) where RS states can exist.Comment: latex, 48 pages, 15 figs using psfi
Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.
Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS
Signals for Lorentz Violation in Electrodynamics
An investigation is performed of the Lorentz-violating electrodynamics
extracted from the renormalizable sector of the general Lorentz- and
CPT-violating standard-model extension. Among the unconventional properties of
radiation arising from Lorentz violation is birefringence of the vacuum. Limits
on the dispersion of light produced by galactic and extragalactic objects
provide bounds of 3 x 10^{-16} on certain coefficients for Lorentz violation in
the photon sector. The comparative spectral polarimetry of light from
cosmologically distant sources yields stringent constraints of 2 x 10^{-32}.
All remaining coefficients in the photon sector are measurable in
high-sensitivity tests involving cavity-stabilized oscillators. Experimental
configurations in Earth- and space-based laboratories are considered that
involve optical or microwave cavities and that could be implemented using
existing technology.Comment: 23 pages REVTe
Physics of Solar Prominences: I - Spectral Diagnostics and Non-LTE Modelling
This review paper outlines background information and covers recent advances
made via the analysis of spectra and images of prominence plasma and the
increased sophistication of non-LTE (ie when there is a departure from Local
Thermodynamic Equilibrium) radiative transfer models. We first describe the
spectral inversion techniques that have been used to infer the plasma
parameters important for the general properties of the prominence plasma in
both its cool core and the hotter prominence-corona transition region. We also
review studies devoted to the observation of bulk motions of the prominence
plasma and to the determination of prominence mass. However, a simple inversion
of spectroscopic data usually fails when the lines become optically thick at
certain wavelengths. Therefore, complex non-LTE models become necessary. We
thus present the basics of non-LTE radiative transfer theory and the associated
multi-level radiative transfer problems. The main results of one- and
two-dimensional models of the prominences and their fine-structures are
presented. We then discuss the energy balance in various prominence models.
Finally, we outline the outstanding observational and theoretical questions,
and the directions for future progress in our understanding of solar
prominences.Comment: 96 pages, 37 figures, Space Science Reviews. Some figures may have a
better resolution in the published version. New version reflects minor
changes brought after proof editin
- …