60 research outputs found

    Effects of dose modifications on the safety and efficacy of dacomitinib for EGFR mutation-positive non-small-cell lung cancer

    Get PDF
    Aim: We evaluated reasons for dacomitinib dose reduction (DR) and examined adverse event (AE) incidence, key efficacy end points (progression-free survival [PFS]/overall survival [OS]), and pharmacokinetics in dose-reducing patients in the ARCHER 1050 trial. Patients & methods: Newly diagnosed patients with EGFR mutation-positive, advanced non-small-cell lung cancer received oral dacomitinib (45 mg once-daily [QD]), with stepwise toxicity-managing DR (30 and 15 mg QD) permitted. Results: Skin toxicities (62.7%) were the most common DR-leading AEs. The AE incidence and severity decreased following DRs. Initial plasma dacomitinib exposure (45 mg QD) was generally lower in patients remaining at 45 mg QD compared with dose-reducing patients. Median PFS and OS were similar in all dacomitinib-treated patients and dose-reducing patients. Conclusion: Tolerability-guided dose modifications enabled patients to continue with dacomitinib and benefit from PFS/OS improvement

    Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation

    Get PDF
    We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10-11 to 5.0 × 10-21). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10-6). Our results provide new evidence for the role of DNA methylation in blood pressure regulation

    Radio Emissions from Solar Active Regions

    Full text link

    Theoretical modeling for the stereo mission

    Full text link

    SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination

    Get PDF
    BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript

    Gridded square frequency-selective surfaces

    Full text link
    As a frequency-selective surface for dual-band antennas the gridded square provides a transmission region which lies below the reflection band and separated from it in frequency by a factor in the range 1-3 to about 2. A modal formulation of the element currents is presented. Features of the predicted plane-wave transmission response for TE and TM incidence at 45° and for normal incidence are compared with experimental results for a sample of 10 arrays

    Crosspolarizatin from Plane and Hyperbolic Offset Frequency Selective Reflectors

    Full text link

    Robust demand service achievement for the co-production newsvendor

    Full text link
    10.1080/0740817X.2011.587865IIE Transactions (Institute of Industrial Engineers)445327-341IIET

    Study of process dependent reliability in SiOC dielectric interconnects and film

    Full text link
    Proceedings of the International Symposium on the Physical and Failure Analysis of Integrated Circuits, IPFA181-18

    Reliability improvement using buried capping layer in advanced interconnects

    Full text link
    Annual Proceedings - Reliability Physics (Symposium)333-337ARLP
    corecore