18 research outputs found
Effects of the nitric oxide donor, DEA/NO on cortical spreading depression.
NoCortical spreading depression (CSD) is a transient disruption of local ionic homeostasis that may promote migraine attacks and the progression of stroke lesions. We reported previously that the local inhibition of nitric oxide (NO) synthesis with N¿-nitro-L-arginine methyl ester (L-NAME) delayed markedly the initiation of the recovery of ionic homeostasis from CSD. Here we describe a novel method for selective, controlled generation of exogenous NO in a functioning brain region. It is based on microdialysis perfusion of the NO donor, 2-(N,N-diethylamino)-diazenolate-2-oxide (DEA/NO). As DEA/NO does not generate NO at alkaline pH, and as the brain has a strong acid-base buffering capacity, DEA/NO was perfused in a medium adjusted at alkaline (but unbuffered) pH. Without DEA/NO, such a microdialysis perfusion medium did not alter CSD. DEA/NO (1, 10 and 100 ¿M) had little effect on CSD by itself, but it reversed in a concentration-dependent manner the effects of NOS inhibition by 1 mM L-NAME. These data demonstrate that increased formation of endogenous NO associated with CSD is critical for subsequent, rapid recovery of cellular ionic homeostasis. In this case, the molecular targets for NO may be located either on brain cells to suppress mechanisms directly involved in CSD genesis, or on local blood vessels to couple flow to the increased energy demand associated with CS
Endothelin-1-induced spreading depression in rats is associated with a microarea of selective neuronal necrosis.
Two different theories of migraine aura exist: In the vascular theory of Wolff, intracerebral vasoconstriction causes migraine aura via energy deficiency, whereas in the neuronal theory of Leão and Morison, spreading depression (SD) initiates the aura. Recently, it has been shown that the cerebrovascular constrictor endothelin-1 (ET-1) elicits SD when applied to the cortical surface, a finding that could provide a bridge between the vascular and the neuronal theories of migraine aura. Several arguments support the notion that ET-1-induced SD results from local vasoconstriction, but definite proof is missing. If ET-1 induces SD via vasoconstriction/ischemia, then neuronal damage is likely to occur, contrasting with the fact that SD in the otherwise normal cortex is not associated with any lesion. To test this hypothesis, we have performed a comprehensive histologic study of the effects of ET-1 when applied topically to the cerebral cortex of halothane-anesthetized rats. Our assessment included histologic stainings and immunohistochemistry for glial fibrillary acidic protein, heat shock protein 70, and transferase dUTP nick-end labeling assay. During ET-1 application, we recorded (i) subarachnoid direct current (DC) electroencephalogram, (ii) local cerebral blood flow by laser-Doppler flowmetry, and (iii) changes of oxyhemoglobin and deoxyhemoglobin by spectroscopy. At an ET-1 concentration of 1 muM, at which only 6 of 12 animals generated SD, a microarea with selective neuronal death was found only in those animals demonstrating SD. In another five selected animals, which had not shown SD in response to ET-1, SD was triggered at a second cranial window by KCl and propagated from there to the window exposed to ET-1. This treatment also resulted in a microarea of neuronal damage. In contrast, SD invading from outside did not induce neuronal damage in the absence of ET-1 (n = 4) or in the presence of ET-1 if ET-1 was coapplied with BQ-123, an ET(A) receptor antagonist (n = 4). In conclusion, SD in presence of ET-1 induced a microarea of selective neuronal necrosis no matter where the SD originated. This effect of ET-1 appears to be mediated by the ET(A) receptor
Amygdala amino acid and monoamine levels in genetically Fast and Slow kindling rat strains during massed amygdala kindling: a microdialysis study
We investigated the neurochemistry of epileptic seizures in rats selectively bred to be seizure-prone (Fast) vs. seizure-resistant (Slow) to amygdala kindling. Microdialysis was used to measure levels of amino acids [glutamate, aspartate and gamma-aminobutyric acid (GABA)] and monoamines (noradrenaline, dopamine and serotonin) during \u27massed\u27 stimulation (MS) (every 6 min) of the ipsilateral amygdala for a total of 40 stimulation trials. Behavioral seizure profiles together with their afterdischarge thresholds (ADTs) and associated durations were assessed during the procedure, and subsequently were redetermined 1, 7 and 14 days later. Then normal \u27daily\u27 kindling commenced and continued until the animal reached the fully kindled state. During MS, several generalized seizures were triggered in Fast rats that were associated with long afterdischarge (AD) durations and intermittent periods of elevated thresholds, but in Slow rats, most stimulations were associated with stable ADTs and short ADs. Progressively increasing extracellular glutamate and decreasing GABA was observed in Fast rats during the MS, whereas Slow rats showed levels similar to baseline values. Levels of noradrenaline and dopamine, but not of serotonin, were also increased in both strains throughout the MS treatment. In Fast rats, a dramatic lengthening of AD durations occurred 7 and 14 days following MS, as well as subsequent strong positive transfer to daily kindling, all of which were not seen in Slow rats. Together, these results show that repeated, closely spaced stimulations of the amygdala can differentially alter excitatory and/or inhibitory transmitter levels in a seizure network, and that sensitivity to this manipulation is genetically determined