18 research outputs found
Precision Primordial He Measurement with CMB Experiments
Big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) are
two major pillars of cosmology. Standard BBN accurately predicts the primordial
light element abundances (He, D, He and Li), depending on one
parameter, the baryon density. Light element observations are used as a
baryometers. The CMB anisotropies also contain information about the content of
the universe which allows an important consistency check on the Big Bang model.
In addition CMB observations now have sufficient accuracy to not only determine
the total baryon density, but also resolve its principal constituents, H and
He. We present a global analysis of all recent CMB data, with special
emphasis on the concordance with BBN theory and light element observations. We
find and
(fraction of baryon mass as He) using CMB data alone, in agreement with
He abundance observations. With this concordance established we show that
the inclusion of BBN theory priors significantly reduces the volume of
parameter space. In this case, we find
and . We also find that the inclusion of deuterium
abundance observations reduces the and ranges by a factor
of 2. Further light element observations and CMB anisotropy experiments
will refine this concordance and sharpen BBN and the CMB as tools for precision
cosmology.Comment: 7 pages, 3 color figures made minor changes to bring inline with
journal versio
Solar Neutrino Constraints on the BBN Production of Li
Using the recent WMAP determination of the baryon-to-photon ratio, 10^{10}
\eta = 6.14 to within a few percent, big bang nucleosynthesis (BBN)
calculations can make relatively accurate predictions of the abundances of the
light element isotopes which can be tested against observational abundance
determinations. At this value of \eta, the Li7 abundance is predicted to be
significantly higher than that observed in low metallicity halo dwarf stars.
Among the possible resolutions to this discrepancy are 1) Li7 depletion in the
atmosphere of stars; 2) systematic errors originating from the choice of
stellar parameters - most notably the surface temperature; and 3) systematic
errors in the nuclear cross sections used in the nucleosynthesis calculations.
Here, we explore the last possibility, and focus on possible systematic errors
in the He3(\alpha,\gamma)Be7 reaction, which is the only important Li7
production channel in BBN. The absolute value of the cross section for this key
reaction is known relatively poorly both experimentally and theoretically. The
agreement between the standard solar model and solar neutrino data thus
provides additional constraints on variations in the cross section (S_{34}).
Using the standard solar model of Bahcall, and recent solar neutrino data, we
can exclude systematic S_{34} variations of the magnitude needed to resolve the
BBN Li7 problem at > 95% CL. Additional laboratory data on
He3(\alpha,\gamma)Be7 will sharpen our understanding of both BBN and solar
neutrinos, particularly if care is taken in determining the absolute cross
section and its uncertainties. Nevertheless, it already seems that this
``nuclear fix'' to the Li7 BBN problem is unlikely; other possible solutions
are briefly discussed.Comment: 21 pages, 3 ps figure
Primordial Nucleosynthesis for the New Cosmology: Determining Uncertainties and Examining Concordance
Big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) have
a long history together in the standard cosmology. The general concordance
between the predicted and observed light element abundances provides a direct
probe of the universal baryon density. Recent CMB anisotropy measurements,
particularly the observations performed by the WMAP satellite, examine this
concordance by independently measuring the cosmic baryon density. Key to this
test of concordance is a quantitative understanding of the uncertainties in the
BBN light element abundance predictions. These uncertainties are dominated by
systematic errors in nuclear cross sections. We critically analyze the cross
section data, producing representations that describe this data and its
uncertainties, taking into account the correlations among data, and explicitly
treating the systematic errors between data sets. Using these updated nuclear
inputs, we compute the new BBN abundance predictions, and quantitatively
examine their concordance with observations. Depending on what deuterium
observations are adopted, one gets the following constraints on the baryon
density: OmegaBh^2=0.0229\pm0.0013 or OmegaBh^2 = 0.0216^{+0.0020}_{-0.0021} at
68% confidence, fixing N_{\nu,eff}=3.0. Concerns over systematics in helium and
lithium observations limit the confidence constraints based on this data
provide. With new nuclear cross section data, light element abundance
observations and the ever increasing resolution of the CMB anisotropy, tighter
constraints can be placed on nuclear and particle astrophysics. ABRIDGEDComment: 54 pages, 20 figures, 5 tables v2: reflects PRD version minor changes
to text and reference
The impacts of a river effluent on the coastal seagrass habitats of Mahé, Seychelles
A survey was conducted investigating the composition, distribution and abundance of seagrass in the vicinity of an untreated river effluent on the island of Mahé, Seychelles. This is a highly populated region of the island with a high concentration of human activity occurring within the river catchment. Results indicated that sedimentation, salinity and water quality resulting from the effluent discharge appears to be the dominant factor in inhibiting seagrass growth immediately adjacent to and north of the effluent mouth resulting from sea currents driven by south-easterly winds
On parity vectors of Latin squares
The parity vectors of two Latin squares of the same side n provide a necessary condition for the two squares to be biembeddable in an orientable surface. We investigate constraints on the parity vector of a Latin square resulting from structural properties of the square, and show how the parity vector of a direct product may be obtained from the parity vectors of the constituent factors. Parity vectors for Cayley tables of all Abelian groups, some non-Abelian groups, Steiner quasigroups and Steiner loops are determined. Finally, we give a lower bound on the number of main classes of Latin squares of side n that admit no self-embeddings