5 research outputs found

    Magnetic trapping of metastable 3P2^3P_2 atomic strontium

    Get PDF
    We report the magnetic trapping of metastable 3P2^3P_2 atomic strontium. Atoms are cooled in a magneto-optical trap (MOT) operating on the dipole allowed 1S0−1P1^1S_0-^1P_1 transition at 461 nm. Decay via 1P1→1D2→3P2^1P_1\to {^1D_2}\to {^3P_2} continuously loads a magnetic trap formed by the quadrupole magnetic field of the MOT. Over 10810^8 atoms at a density of 8×1098 \times 10^9 cm−3^{-3} and temperature of 1 mK are trapped. The atom temperature is significantly lower than what would be expected from the kinetic and potential energy of atoms as they are transferred from the MOT. This suggests that thermalization and evaporative cooling are occurring in the magnetic trap.Comment: This paper has been accepted by PR

    Photoionization of ultracold and Bose-Einstein condensed Rb atoms

    Full text link
    Photoionization of a cold atomic sample offers intriguing possibilities to observe collective effects at extremely low temperatures. Irradiation of a rubidium condensate and of cold rubidium atoms within a magneto-optical trap with laser pulses ionizing through 1-photon and 2-photon absorption processes has been performed. Losses and modifications in the density profile of the remaining trapped cold cloud or the remaining condensate sample have been examined as function of the ionizing laser parameters. Ionization cross-sections were measured for atoms in a MOT, while in magnetic traps losses larger than those expected for ionization process were measured.Comment: 9 pages, 7 figure

    1980–2000

    No full text
    corecore