2 research outputs found

    Di-Pion Decays of Heavy Quarkonium in the Field Correlator Method

    Full text link
    Mechanism of di-pion transitions nS→n′Sππ(n=3,2;n′=2,1)nS\to n'S\pi\pi(n=3,2; n'=2,1) in bottomonium and charmonium is studied with the use of the chiral string-breaking Lagrangian allowing for the emission of any number of π(K,η),\pi(K,\eta), and not containing fitting parameters. The transition amplitude contains two terms, M=a−bM=a-b, where first term (a) refers to subsequent one-pion emission: Υ(nS)→πBBˉ∗→πΥ(n′S)π\Upsilon(nS)\to\pi B\bar B^*\to\pi\Upsilon(n'S)\pi and second term (b) refers to two-pion emission: Υ(nS)→ππBBˉ→ππΥ(n′S)\Upsilon(nS)\to\pi\pi B\bar B\to\pi\pi\Upsilon(n'S). The one-parameter formula for the di-pion mass distribution is derived, dwdq∼\frac{dw}{dq}\sim(phase space) ∣η−x∣2|\eta-x|^2, where x=q2−4mπ2qmax2−4mπ2,x=\frac{q^2-4m^2_\pi}{q^2_{max}-4m^2_\pi}, q2≡Mππ2q^2\equiv M^2_{\pi\pi}. The parameter η\eta dependent on the process is calculated, using SHO wave functions and imposing PCAC restrictions (Adler zero) on amplitudes a,b. The resulting di-pion mass distributions are in agreement with experimental data.Comment: 62 pages,8 tables,7 figure
    corecore