2 research outputs found
Cross-over behaviour in a communication network
We address the problem of message transfer in a communication network. The
network consists of nodes and links, with the nodes lying on a two dimensional
lattice. Each node has connections with its nearest neighbours, whereas some
special nodes, which are designated as hubs, have connections to all the sites
within a certain area of influence. The degree distribution for this network is
bimodal in nature and has finite variance. The distribution of travel times
between two sites situated at a fixed distance on this lattice shows fat
fractal behaviour as a function of hub-density. If extra assortative
connections are now introduced between the hubs so that each hub is connected
to two or three other hubs, the distribution crosses over to power-law
behaviour. Cross-over behaviour is also seen if end-to-end short cuts are
introduced between hubs whose areas of influence overlap, but this is much
milder in nature. In yet another information transmission process, namely, the
spread of infection on the network with assortative connections, we again
observed cross-over behaviour of another type, viz. from one power-law to
another for the threshold values of disease transmission probability. Our
results are relevant for the understanding of the role of network topology in
information spread processes.Comment: 12 figure