85 research outputs found
N-body simulations of gravitational dynamics
We describe the astrophysical and numerical basis of N-body simulations, both
of collisional stellar systems (dense star clusters and galactic centres) and
collisionless stellar dynamics (galaxies and large-scale structure). We explain
and discuss the state-of-the-art algorithms used for these quite different
regimes, attempt to give a fair critique, and point out possible directions of
future improvement and development. We briefly touch upon the history of N-body
simulations and their most important results.Comment: invited review (28 pages), to appear in European Physics Journal Plu
Inflation Physics from the Cosmic Microwave Background and Large Scale Structure
Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments---the theory of cosmic inflation---and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1 of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5-sigma measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds
Thermomechanical erosion modelling of Baydaratskaya Bay, Russia with COSMOS
Rapid coastal erosion threatens Arctic coastal infrastructure, including communities and industrial installations. Erosion of permafrost depends on numerous processes, including thermal and mechanical behaviour of frozen and unfrozen soil, nearshore hydrodynamics, atmospheric forcing, and the presence of sea ice. The quantification and numerical modelling of these processes is essential to predicting Arctic coastal erosion. This paper presents a case study of Baydaratskaya Bay, Russia, using the COSMOS numerical model to predict thermal-mechanical erosion. In particular, this study focuses on thermoabrasional rather than thermodenudational processes. A field dataset of onshore thermal and mechanical soil characteristics was supplemented by sources from the literature to serve as input for the model. A detailed sensitivity analysis has been conducted to determine the influence of key parameters on coastal erosion rates at the study site. This case study highlights the need for expanded data collection on Arctic coastlines and provides direction for future investigations
Long-term Atmospheric Mercury Wet Deposition at Underhill, Vermont
Section 112(m) of the 1990 Clean Air Act Amendments, referred to as the Great Waters Program, mandated an assessment of atmospheric deposition of hazardous air pollutants (HAPs) to Lake Champlain. Mercury (Hg) was listed as a priority HAP and has continued to be a high priority for a number of national and international programs. An assessment of the magnitude and seasonal variation of atmospheric Hg levels and deposition in the Lake Champlain basin was initiated in December 1992 which included event precipitation collection, as well as collection of vapor and particle phase Hg in ambient air. Sampling was performed at the Proctor Maple Research Center in Underhill Center, VT. The range in the annual volume-weighted mean concentration for Hg in precipitation was 7.8–10.5 ng/l for the 11-year sampling period and the average amount of Hg deposited with each precipitation event was 0.10 μg/m 2 . The average amount of Hg deposited through precipitation each year from 1993 to 2003 was 9.7 μg/m 2 /yr. A seasonal pattern for Hg in precipitation is clearly evident, with increased Hg concentrations and deposition observed during spring and summer months. While a clear trend in the 11-year event deposition record at Underhill was not observed, a significant decrease in the event max-to-monthly ratio was observed suggesting that a major source influence was controlled over time. Discrete precipitation events were responsible for significant fractions of the monthly and annual loading of Hg to the forested ecosystem in Vermont. Monthly-averaged temperatures were found to be moderately correlated with monthly volume-weighted mean Hg concentrations ( r 2 =0.61) and Hg deposition ( r 2 =0.67) recorded at the Vermont site. Meteorological analysis indicated the highest levels of Hg in precipitation were associated with regional transport from the west, southwest, and south during the warmer months.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44444/1/10646_2004_Article_6260.pd
Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel
A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved
Defining an ageing-related pathology, disease or syndrome: International Consensus Statement
Around the world, individuals are living longer, but an increased average lifespan does not always equate to an increased health span. With advancing age, the increased prevalence of ageing-related diseases can have a significant impact on health status, functional capacity and quality of life. It is therefore vital to develop comprehensive classification and staging systems for ageing-related pathologies, diseases and syndromes. This will allow societies to better identify, quantify, understand and meet the healthcare, workforce, well-being and socioeconomic needs of ageing populations, whilst supporting the development and utilisation of interventions to prevent or to slow, halt or reverse the progression of ageing-related pathologies. The foundation for developing such classification and staging systems is to define the scope of what constitutes an ageing-related pathology, disease or syndrome. To this end, a consensus meeting was hosted by the International Consortium to Classify Ageing-Related Pathologies (ICCARP), on February 19, 2024, in Cardiff, UK, and was attended by 150 recognised experts. Discussions and voting were centred on provisional criteria that had been distributed prior to the meeting. The participants debated and voted on these. Each criterion required a consensus agreement of ≥ 70% for approval. The accepted criteria for an ageing-related pathology, disease or syndrome were (1) develops and/or progresses with increasing chronological age; (2) should be associated with, or contribute to, functional decline or an increased susceptibility to functional decline and (3) evidenced by studies in humans. Criteria for an ageing-related pathology, disease or syndrome have been agreed by an international consortium of subject experts. These criteria will now be used by the ICCARP for the classification and ultimately staging of ageing-related pathologies, diseases and syndromes
Riociguat treatment in patients with chronic thromboembolic pulmonary hypertension: Final safety data from the EXPERT registry
Objective: The soluble guanylate cyclase stimulator riociguat is approved for the treatment of adult patients with pulmonary arterial hypertension (PAH) and inoperable or persistent/recurrent chronic thromboembolic pulmonary hypertension (CTEPH) following Phase
Deep Underground Neutrino Experiment (DUNE), far detector technical design report, volume III: DUNE far detector technical coordination
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module
Description and Intercomparison of Techniques to measure N and S compounds in the Western Atlantic Ocean Experiment
The data set of N and S compound measurements from WATOX-85 has been examined in detail to assess that data quality and suitability for use in addressing the goals of the Western Atlantic Ocean Experiment. Accuracy estimates for particulate SO42− and NO3−, SO2 and HNO3 have been made on the basis of the investigators' estimates and the results of intercomparisons. Intercomparisons of ground-based particulate SO42− and all filter SO2 and HNO3 measurements show them to be consistent with the 20% accuracies quoted by the investigators. Ground-based particulate NO3− and aircraft particulate SO42− show inconsistencies such that the accuracies can be no better than 28% and the aircraft particulate NO3 has an accuracy of no better than 60%
- …