24 research outputs found
Investigating genome wide dna methylation in airway and parenchymal fibroblasts from healthy individuals and individuals with copd
Rationale: Lung fibroblasts are implicated in respiratory disease pathology including chronic obstructive pulmonary disease (COPD). Phenotypic differences between fibroblasts isolated from the airway versus the parenchyma have been described but no studies have compared the cell types on a genome wide scale. DNA methylation is a reversible modification of the DNA structure with the ability to affect cell function via the alteration of gene expression. Here we compared genome wide DNA methylation profiles from airway and parenchymal fibroblasts and assessed modification to these profiles in cells isolated from individuals with COPD.
Methods: DNA was isolated from parenchymal and airway fibroblasts at passage 4, and bisulphite treated. Site specific, quantitative genome wide methylation was determined using the Illumina 450K Infinium Methylation BeadChip array. Linear modelling and DMRcate functions identified differentially methylated sites and regions respectively between airway and parenchymal fibroblasts isolated from individuals with normal lung function versus those with COPD.
Results: 3980 CpG (methylation) sites significantly differed after Bonferroni correction between airway and parenchymal fibroblasts isolated from healthy individuals. These sites had a broad distribution of effect size, with 240 CpG sites displaying a difference in methylation of >50%. 78 of these sites validated in a second cohort of 7 sets of paired airway and parenchymal fibroblasts isolated from the same individual. There was genomic proximity to these sites and DMRcate was used to refine the individual CpG sites to 5 regions of interest associated with 5 genes; HLX, TWIST1, CREB5, SKAP2 and PRDM16. Differences in methylation were less pronounced when comparing cells isolated from healthy individuals to those with COPD. In airway fibroblasts 47 DMRcate regions were identified with a maximum difference in methylation of at least 20%. In parenchymal fibroblasts 3 DMRcate regions were identified with a maximum difference in methylation of at least 20%.
Conclusions: DNA methylation profiles are significantly different between airway and parenchymal fibroblasts but only small modifications are associated with COPD. Future work will focus on validating a methylation based markers of parenchymal versus airway fibroblasts and associating our differential observations with gene/protein expression
Characterization of a lung epithelium specific E-cadherin knock-out model: Implications for obstructive lung pathology
The airway epithelium regulates responses to aeroallergens, acting as a physical and immunological barrier. In asthma, epithelial barrier function and the expression of adherens junction protein E-cadherin is compromised, but it is unknown whether this is cause or consequence of the disease. We hypothesized that airway epithelial loss of E-cadherin is a critical step in the development of manifestations of asthma. We generated a transgenic mouse model with conditional loss of E-cadherin in lung epithelial cells at birth and onwards. We observed normal lung development at the time of birth in mice lacking E-cadherin in the lung epithelium. However, E-cadherin deficiency led to progressive epithelial damage in mice growing into adulthood, as evidenced by airway epithelial denudation, decreased zonula occludens (ZO)-1 expression, loss of ciliated cells, and enlarged alveolar spaces. In addition, spontaneous goblet cell metaplasia with mucus production was observed. These epithelial changes were accompanied by elevated levels of the epithelial-derived chemokine CCL17, infiltration of eosinophils and dendritic cells, and mucus production. In conclusion, loss of E-cadherin induces features in the lung reminiscent of those observed in asthma, indicating that the disruption of E-cadherin-mediated cell-cell contacts may play a key role in the development of asthma manifestations
Three dimensional imaging of paraffin embedded human lung tissue samples by micro-computed tomography
Background: understanding the three-dimensional (3-D) micro-architecture of lung tissue can provide insights into the pathology of lung disease. Micro computed tomography (µCT) has previously been used to elucidate lung 3D histology and morphometry in fixed samples that have been stained with contrast agents or air inflated and dried. However, non-destructive microstructural 3D imaging of formalin-fixed paraffin embedded (FFPE) tissues would facilitate retrospective analysis of extensive tissue archives of lung FFPE lung samples with linked clinical data. Methods: FFPE human lung tissue samples (n = 4) were scanned using a Nikon metrology µCT scanner. Semi-automatic techniques were used to segment the 3D structure of airways and blood vessels. Airspace size (mean linear intercept, Lm) was measured on µCT images and on matched histological sections from the same FFPE samples imaged by light microscopy to validate µCT imaging. Results: the µCT imaging protocol provided contrast between tissue and paraffin in FFPE samples (15mm x 7mm). Resolution (voxel size 6.7 µm) in the reconstructed images was sufficient for semi-automatic image segmentation of airways and blood vessels as well as quantitative airspace analysis. The scans were also used to scout for regions of interest, enabling time-efficient preparation of conventional histological sections. The Lm measurements from µCT images were not significantly different to those from matched histological sections. Conclusion: we demonstrated how non-destructive imaging of routinely prepared FFPE samples by laboratory µCT can be used to visualize and assess the 3D morphology of the lung including by morphometric analysis
Induction of epithelial-mesenchymal transition in primary airway epithelial cells from patients with asthma by transforming growth factor-β1
Rationale: Airway remodeling in asthma is associated with the accumulation of fibroblasts, the primary cell responsible for synthesis and secretion of extracellular matrix proteins. The process by which the number of fibroblasts increases in asthma is poorly understood, but epithelial-mesenchymal transition (EMT)may play a significant role. Objectives: To evaluate whether EMT occurs in primary airway epithelial cells (AECs), themechanisms involved, and if this process is altered in asthmatic AECs. Methods: AECs were obtained fromsubjects with asthma (n = 8) and normal subjects without asthma (n = 10). Monolayer and air-liquid interface-AEC (ALI-AEC) cultures were treated with transforming growth factor (TGF)-β1 (10 ng/ml) for 72 hours and assayed for mesenchymal and epithelial markers using quantitative polymerase chain reaction, confocal microscopy, and immunoblot. The involvement of BMP-7, Smad3, and MAPK-mediated signaling were also evaluated. Measurements and Main Results: TGF-β1-induced EMT in AEC monolayers derived from subjects with asthma and normal donors. EMT was characterized by changes in cellmorphology, increased expression of mesenchymal markers EDA-fibronectin, vimentin, α-smooth muscle actin, and collagen-1, and loss of epithelial markers E-cadherin and zonular occludin-1. Inhibition of TGF-β1-induced signaling with Smad3-inhibiting siRNA or TGF-β1-neutralizing antibodies prevented and reversed EMT, respectively, whereas BMP-7 had no effect. In ALIAEC cultures derived from normal subjects, EMT was confined to basally situated cells, whereas in asthmatic ALI-AEC cultures EMT was widespread throughout the epithelium. Conclusions: TGF-β1 induces EMT in a Smad3-dependent manner in primary AECs. However, in asthmatic-derived ALI-AEC cultures, the number of cells undergoing EMT is greater. These findings support the hypothesis that epithelial repair in asthmatic airways is dysregulated