214 research outputs found

    In situ synchrotron x-ray study of ultrasound cavitation and its effect on solidification microstructures

    Get PDF
    Considerable progress has been made in studying the mechanism and effectiveness of using ultrasound waves to manipulate the solidification microstructures of metallic alloys. However, uncertainties remain in both the underlying physics of how microstructures evolve under ultrasonic waves, and the best technological approach to control the final microstructures and properties. We used the ultrafast synchrotron X-ray phase contrast imaging facility housed at the Advanced Photon Source, Argonne National Laboratory, US to study in situ the highly transient and dynamic interactions between the liquid metal and ultrasonic waves/bubbles. The dynamics of ultrasonic bubbles in liquid metal and their interactions with the solidifying phases in a transparent alloy were captured in situ. The experiments were complemented by the simulations of the acoustic pressure field, the pulsing of the bubbles, and the associated forces acting onto the solidifying dendrites. The study provides more quantitative understanding on how ultrasonic waves/bubbles influence the growth of dendritic grains and promote the grain multiplication effect for grain refinement

    Development of a Positive Youth Development Program: Promoting the Mental Health of Stressful Adolescents Using Principles of Problem Solving Therapy

    Get PDF
    This paper outlines the proposal for the development, implementation, and evaluation of a positive youth development program that attempts to promote the mental health of stressful Chinese adolescents using principles of Problem Solving Therapy (PST). There are two general aims of PST: to help clients identify life difficulties and resolve them, as well as to teach them skills on how to deal with future problems. The proposed project will utilize the principles of PST as the guiding framework to run two mental health promotion courses for adolescents who are experiencing disturbing stressful responses and students who want to improve their stress management style. Both objective and subjective outcome evaluation strategies will be carried out to assess the effectiveness of the intervention to promote the psychological well-being in adolescents who are experiencing stress. A related sample proposal is described that can give social workers some insight on how to prepare a proposal for developing the Tier 2 Program of the Project P.A.T.H.S. (Positive Adolescent Training through Holistic Social Programs)

    High speed synchrotron X-ray imaging studies of the ultrasound shockwave and enhanced flow during metal solidification processes

    Get PDF
    The highly dynamic behaviour of ultrasonic bubble implosion in liquid metal, the multiphase liquid metal flow containing bubbles and particles, and the interaction between ultrasonic waves and semisolid phases during solidification of metal were studied in situ using the complementary ultrafast and high speed synchrotron X-ray imaging facilities housed respectively at the Advanced Photon Source, Argonne National Laboratory, US, and Diamond Light Source, UK. Real-time ultrafast X-ray imaging of 135,780 frames per second (fps) revealed that ultrasonic bubble implosion in a liquid Bi-8 wt. %Zn alloy can occur in a single wave period (30 kHz), and the effective region affected by the shockwave at implosion was 3.5 times the original bubble diameter. Furthermore, ultrasound bubbles in liquid metal move faster than the primary particles, and the velocity of bubbles is 70 ~ 100% higher than that of the primary particles present in the same locations close to the sonotrode. Ultrasound waves can very effectively create a strong swirling flow in a semisolid melt in less than one second. The energetic flow can detach solid particles from the liquid-solid interface and redistribute them back into the bulk liquid very effectively

    Stability of warped AdS3 vacua of topologically massive gravity

    Full text link
    AdS3 vacua of topologically massive gravity (TMG) have been shown to be perturbatively unstable for all values of the coupling constant except the chiral point \mu l=1. We study the possibility that the warped vacua of TMG, which exist for all values of \mu, are stable under linearized perturbations. In this paper, we show that spacelike warped AdS3 vacua with Compere-Detournay boundary conditions are indeed stable in the range \mu l > 3. This is precisely the range in which black hole solutions arise as discrete identifications of the warped AdS3 vacuum. The situation somewhat resembles chiral gravity: although negative energy modes do exist, they are all excluded by the boundary conditions, and the perturbative spectrum solely consists of boundary (pure large gauge) gravitons.Comment: 30 pages, 1 figur

    7th Drug hypersensitivity meeting: part two

    Get PDF
    No abstract availabl
    • 

    corecore