88 research outputs found
The nucleic acid and proteins of epizootic haemorrhagic disease virus
Purified epizootic haemorrhagic disease virus (EHDV) was shown to contain 10 double-stranded RNA segments and a double-layered protein capsid with 4 major and 4 minor polypeptides. The virus differed from bluetongue virus (BTV), the orbivirus prototype, in that EHDV had an additional minor polypeptide component. This component, together with the major polypeptides P2 and P5, formed the outer capsid layer of the virus. The extra polypeptide apparently stabilizes this layer since, unlike BTV, EHDV was quite stable on CsC1 gradients at both pH 7,0 and 8,0. EHD virions were found to have a density of 1,36 g/mℓ, while particles without the outer capsid layer were isolated and had a density of 1,40 g/mℓ. Two non-capsid polypeptides, P5A and P6A, were identified in addition to the 8 capsid polypeptides. Polypeptide P5A was synthesized in excess of all the others. There was little homology between the nucleic acids of EHDV and BTV with only 5-10% cross-hybridization. No hybrid double-stranded RNA segments were identified. We found by cross-immune precipitation that the major core polypeptides of the 2 viruses (P7 and P3) have common antigenic determinants.This article has been scanned in colour with a HP Scanjet 5590; 300dpi.
Adobe Acrobat XI Pro was used to OCR the text and also for the merging and conversion to the final presentation PDF-Format
Monopole Percolation in pure gauge compact QED
The role of monopoles in quenched compact QED has been studied by measuring
the cluster susceptibility and the order parameter previously
introduced by Hands and Wensley in the study of the percolation transition
observed in non-compact QED. A correlation between these parameters and the
energy (action) at the phase transition has been observed. We conclude that the
order parameter is a sensitive probe for studying the phase
transition of pure gauge compact QED.Comment: LaTeX file + 4 PS figures, 12 pag., Pre-UAB-FT-308 ILL-(TH)-94-1
The design, construction and performance of the MICE scintillating fibre trackers
This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2011 ElsevierCharged-particle tracking in the international Muon Ionisation Cooling Experiment (MICE) will be performed using two solenoidal spectrometers, each instrumented with a tracking detector based on diameter scintillating fibres. The design and construction of the trackers is described along with the quality-assurance procedures, photon-detection system, readout electronics, reconstruction and simulation software and the data-acquisition system. Finally, the performance of the MICE tracker, determined using cosmic rays, is presented.This work was supported by the Science and Technology Facilities Council under grant numbers PP/E003214/1, PP/E000479/1, PP/E000509/1, PP/E000444/1, and through SLAs with STFC-supported laboratories. This work was also supportedby the Fermi National Accelerator Laboratory, which is operated by the Fermi Research Alliance, under contract No. DE-AC02-76CH03000 with the U.S. Department of Energy, and by the U.S. National Science Foundation under grants PHY-0301737,PHY-0521313, PHY-0758173 and PHY-0630052. The authors also acknowledge the support of the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan
Serum intact parathyroid hormone levels in cats with chronic kidney disease
Chronic kidney disease (CKD) is frequently observed in cats and it is characterized as a multisystemic illness, caused by several underlying metabolic changes, and secondary renal hyperparathyroidism (SRHPT) is relatively common; usually it is associated with the progression of renal disease and poor prognosis. This study aimed at determining the frequency of SRHPT, and discussing possible mechanisms that could contribute to the development of SRHPT in cats at different stages of CKD through the evaluation of calcium and phosphorus metabolism, as well as acid-base status. Forty owned cats with CKD were included and divided into three groups, according to the stages of the disease, classified according to the International Renal Interest Society (IRIS) as Stage II (n=12), Stage III (n=22) and Stage IV (n=6). Control group was composed of 21 clinically healthy cats. Increased serum intact parathyroid hormone (iPTH) concentrations were observed in most CKD cats in all stages, and mainly in Stage IV, which hyperphosphatemia and ionized hypocalcemia were detected and associated to the cause for the development of SRHPT. In Stages II and III, however, ionized hypercalcemia was noticed suggesting that the development of SRHPT might be associated with other factors, and metabolic acidosis could be involved to the increase of serum ionized calcium. Therefore, causes for the development of SRHPT seem to be multifactorial and they must be further investigated, mainly in the early stages of CKD in cats, as hyperphosphatemia and ionized hypocalcemia could not be the only factors involved
Pion contamination in the MICE muon beam
The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than 1\% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is at 90\% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.Department of Energy and National Science Foundation (U.S.A.), the Instituto Nazionale di Fisica Nucleare (Italy), the Science and Technology Facilities Council (U.K.), the European Community under the European Commission Framework Programme 7 (AIDA project, grant agreement no. 262025, TIARA project, grant agreement no. 261905, and EuCARD), the Japan Society for the Promotion of Science and the Swiss National Science Foundation, in the framework of the SCOPES programme
Phylogenomics and the rise of the angiosperms
Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5,6,7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade
- …