9 research outputs found
Extracting Meaningful Slopes from Terrain Contours
Good quality terrain models are becoming more and more important, as applications such as runoff modelling are being developed that demand better surface orientation information than is available from traditional interpolation techniques. A consequence is that poor-quality elevation grids must be massaged before they provide useable runoff models. Rather than using direct data acquisition, this project concentrated on using available contour data because, despite modern techniques, contour maps are still the most available form of elevation information. Recent work on the automatic reconstruction of curves from point samples, and the generation of medial axis transforms (skeletons) has greatly helped in expressing the spatial relationships between topographic sets of contours. With these techniques the insertion of skeleton points into a TIN model guarantees the elimination of all "flat triangles" where all three vertices have the same elevation. Additional assumptions about the local uniformity of slopes give us enough information to assign elevation values to these skeleton points. In addition, various interpolation techniques were compared using the enriched contour data. Examination of the quality and consistency of the resulting maps indicates the required properties of the interpolation method in order to produce terrain models with valid slopes. The result provides us with a surprisingly realistic model of the surface - that is, one that conforms well to our subjective interpretation of what a real landscape should look like