3 research outputs found

    Circumstellar interaction in supernovae in dense environments - an observational perspective

    Full text link
    In a supernova explosion, the ejecta interacting with the surrounding circumstellar medium (CSM) give rise to variety of radiation. Since CSM is created from the mass lost from the progenitor star, it carries footprints of the late time evolution of the star. This is one of the unique ways to get a handle on the nature of the progenitor star system. Here, I will focus mainly on the supernovae (SNe) exploding in dense environments, a.k.a. Type IIn SNe. Radio and X-ray emission from this class of SNe have revealed important modifications in their radiation properties, due to the presence of high density CSM. Forward shock dominance of the X-ray emission, internal free-free absorption of the radio emission, episodic or non-steady mass loss rate, asymmetry in the explosion seem to be common properties of this class of SNe.Comment: Fixed minor typos. 31 pages, 9 figures, accepted for publication in Space Science Reviews. Chapter in International Space Science Institute (ISSI) Book on "Supernovae" to be published in Space Science Reviews by Springe

    Modulation of motor cortical excitability following rapid-rate transcranial magnetic stimulation

    No full text
    Objective: To investigate the effect of high frequency rTMS (25 Hz at 90-100% of resting motor threshold) on the excitability of the motor cortex of healthy human subjects.Methods: Resting and active motor threshold, MEP recruitment curve (I/O curve), short interval intracortical inhibition (SICI) and facilitation (ICF), and the duration of the silent period (SP) were tested in the right first dorsal interosscous muscle (FDI) before and twice after the end of 1500 pulses in 16 normal young adult male volunteers.Results: Twenty-five Hertz rTMS decreased motor thresholds, reduced the duration of the silent period and had a tendency to increase the slope of the I/O curve. Most of these effects lasted for the duration of the two post-testing sessions (at least 30 min) and had returned to normal by 2 h. There were no significant effects on SICI/ICF.Conclusion: Twenty-five Hertz rTMS can produce a long lasting increase in cortical excitability in healthy subjects.Significance: This method may prove useful for the study of normal human physiology and for therapeutic manipulation of brain plasticity. (c) 2006 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved
    corecore