57 research outputs found

    Enhanced signal of astrophysical tau neutrinos propagating through Earth

    Get PDF
    Earth absorbs \nue and \numu of energies above about 100 TeV. As is well-known, although \nutau will also disappear through charged-current interactions, the \nutau flux will be regenerated by prompt tau decays. We show that this process also produces relatively large fluxes of secondary \nube and \nubmu, greatly enhancing the detectability of the initial \nutau. This is particularly important because at these energies \nutau is a significant fraction of the expected astrophysical neutrino flux, and only a tiny portion of the atmospheric neutrino flux.Comment: Four pages, two inline figure

    Measuring the prompt atmospheric neutrino flux with down-going muons in neutrino telescopes

    Get PDF
    In the TeV energy region and above, the uncertainty in the level of prompt atmospheric neutrinos would limit the search for diffuse astrophysical neutrinos. We suggest that neutrino telescopes may provide an empirical determination of the flux of prompt atmospheric electron and muon neutrinos by measuring the flux of prompt down-going muons. Our suggestion is based on the consideration that prompt neutrino and prompt muon fluxes at sea level are almost identical.Comment: 4 pages, 3 figure

    Prospects for observations of high-energy cosmic tau neutrinos

    Get PDF
    We study prospects for the observations of high-energy cosmic tau neutrinos (E \geq 10^6 GeV) originating from proton acceleration in the cores of active galactic nuclei. We consider the possibility that vacuum flavor neutrino oscillations induce a tau to muon neutrino flux ratio greatly exceeding the rather small value expected from intrinsic production. The criterias and event rates for under water/ice light Cerenkov neutrino telescopes are given by considering the possible detection of downgoing high-energy cosmic tau neutrinos through characteristic double shower events.Comment: 10 pages, Revtex, 3 figures included with eps

    The Oscillation Probability of GeV Solar Neutrinos of All Active Species

    Get PDF
    In this paper, I address the oscillation probability of O(GeV) neutrinos of all active flavours produced inside the Sun and detected at the Earth. Flavours other than electron-type neutrinos may be produced, for example, by the annihilation of WIMPs which may be trapped inside the Sun. In the GeV energy regime, matter effects are important both for the ``1-3'' system and the ``1-2'' system, and for different neutrino mass hierarchies. A numerical scan of the multidimensional three-flavour parameter space is performed, ``inspired'' by the current experimental situation. One important result is that, in the three-flavour oscillation case, P{alpha,beta} is different from P{beta,alpha} for a significant portion of the parameter space, even if there is no CP-violating phase in the MNS matrix. Furthermore, P{mu,mu} has a significantly different behaviour from P{tau,tau}, which may affect expectations for the number of events detected at large neutrino telescopes.Comment: 38 pages, 10 figure

    Probing Kaluza-Klein Dark Matter with Neutrino Telescopes

    Get PDF
    In models in which all of the Standard Model fields live in extra universal dimensions, the lightest Kaluza-Klein (KK) particle can be stable. Calculations of the one-loop radiative corrections to the masses of the KK modes suggest that the identity of the lightest KK particle (LKP) is mostly the first KK excitation of the hypercharge gauge boson. This LKP is a viable dark matter candidate with an ideal present-day relic abundance if its mass is moderately large, between 600 to 1200 GeV. Such weakly interacting dark matter particles are expected to become gravitationally trapped in large bodies, such as the Sun, and annihilate into neutrinos or other particles that decay into neutrinos. We calculate the annihilation rate, neutrino flux and the resulting event rate in present and future neutrino telescopes. The relatively large mass implies that the neutrino energy spectrum is expected to be well above the energy threshold of AMANDA and IceCube. We find that the event rate in IceCube is between a few to tens of events per year.Comment: 13 pages, 3 figures, LaTeX; typos fixed, version to appear in PR

    Constraints on diffuse neutrino background from primordial black holes

    Get PDF
    We calculated the energy spectra and the fluxes of electron neutrino emitted in the process of evaporation of primordial black holes (PBHs) in the early universe. It was assumed that PBHs are formed by a blue power-law spectrum of primordial density fluctuations. We obtained the bounds on the spectral index of density fluctuations assuming validity of the standard picture of gravitational collapse and using the available data of several experiments with atmospheric and solar neutrinos. The comparison of our results with the previous constraints (which had been obtained using diffuse photon background data) shows that such bounds are quite sensitive to an assumed form of the initial PBH mass function.Comment: 18 pages,(with 7 figures

    Aspects of Two-Photon Physics at Linear e+e- Colliders

    Full text link
    We discuss various reactions at future e+e- and gamma-gamma colliders involving real (beamstrahlung or backscattered laser) or quasi--real (bremsstrahlung) photons in the initial state and hadrons in the final state. The production of two central jets with large pT is described in some detail; we give distributions for the rapidity and pT of the jets as well as the di--jet invariant mass, and discuss the relative importance of various initial state configurations and the uncertainties in our predictions. We also present results for `mono--jet' production where one jet goes down a beam pipe, for the production of charm, bottom and top quarks, and for single production of W and Z bosons. Where appropriate, the two--photon processes are compared with annihilation reactions leading to similar final states. We also argue that the behaviour of the total inelastic gamma-gamma cross section at high energies will probably have little impact on the severity of background problems caused by soft and semi--hard (`minijet') two--photon reactions. We find very large differences in cross sections for all two--photon processes between existing designs for future e+e- colliders, due to the different beamstrahlung spectra; in particular, both designs with >1 events per bunch crossing exist.Comment: 51 pages, 13 figures(not included

    Long Baseline Neutrino Physics with a Muon Storage Ring Neutrino Source

    Get PDF
    We examine the physics capabilities of known flavor neutrino beams from intense muon sources. We find that long-baseline neutrino experiments based on such beams can provide precise measurements of neutrino oscillation mass and mixing parameters. Furthermore, they can test whether the dominant atmospheric neutrino oscillations are \nu_\mu --> \nu_\tau and/or \nu_\mu --> \nu_s, determine the \nu_\mu --> \nu_e content of atmospheric neutrino oscillations, and measure \nu_e --> \nu_\tau appearance. Depending on the oscillation parameters, they may be able to detect Earth matter and CP violation effects and to determine the ordering of some of the mass eigenstates.Comment: 38 pages, Revtex with epsf.sty, 21 postscript figures. Minor text revisions, some new numbers in Tables II and II

    Further investigation of a relic neutralino as a possible origin of an annual-modulation effect in WIMP direct search

    Get PDF
    We analyze the annual-modulation effect, measured by the DAMA Collaboration with the new implementation of a further two-years running, in the context of a possible interpretation in terms of relic neutralinos. We impose over the set of supersymmetric configurations, selected by the annual-modulation data, the constraints derived from WIMP indirect measurements, and discuss the features of the ensuing relic neutralinos. We critically discuss the sources of the main theoretical uncertainties in the analysis of event rates for direct and indirect WIMP searches.Comment: 29 pages, 12 figures, typeset with ReVTeX. In order to reduce size, the version on the archive has low resolution figures. A full version of the paper can be found at http://www.to.infn.it/~fornengo/papers

    High Energy Neutrinos from Gamma Ray Bursts: Event Rates in Neutrino Telescopes

    Full text link
    Following Waxman and Bahcall we calculate the event rate, energy and zenith angle dependence of neutrinos produced in the fireball model of gamma ray bursts (GRB). We emphasize the primary importance of i) burst-to-burst fluctuations and ii) absorption of the neutrinos in the Earth. From the astronomical point of view, we draw attention to the sensitivity of neutrino measurements to the boost Lorentz factor of the fireball Γ\Gamma, which is central to the fireball model, and only indirectly determined by follow-up observations. Fluctuations result in single bursts emitting multiple neutrinos, making it possible to determine the flavor composition of a beam observed after a baseline of thousands of Megaparsecs.Comment: 19 pages, Latex2.09, uses epsfig.sty, 7 postscript figures. Version to be published in Phys. Rev.
    corecore