47 research outputs found
Boundary Effects on Dynamic Behavior of Josephson-Junction Arrays
The boundary effects on the current-voltage characteristics in
two-dimensional arrays of resistively shunted Josephson junctions are examined.
In particular, we consider both the conventional boundary conditions (CBC) and
the fluctuating twist boundary conditions (FTBC), and make comparison of the
obtained results. It is observed that the CBC, which have been widely adopted
in existing simulations, may give a problem in scaling, arising from rather
large boundary effects; the FTBC in general turn out to be effective in
reducing the finite-size effects, yielding results with good scaling behavior.
To resolve the discrepancy between the two boundary conditions, we propose that
the proper scaling in the CBC should be performed with the boundary data
discarded: This is shown to give results which indeed scale well and are the
same as those from the FTBC.Comment: RevTex, Final version to appear in Phys. Rev.
Edge effects in a frustrated Josephson junction array with modulated couplings
A square array of Josephson junctions with modulated strength in a magnetic
field with half a flux quantum per plaquette is studied by analytic arguments
and dynamical simulations. The modulation is such that alternate columns of
junctions are of different strength to the rest. Previous work has shown that
this system undergoes an XY followed by an Ising-like vortex lattice
disordering transition at a lower temperature. We argue that resistance
measurements are a possible probe of the vortex lattice disordering transition
as the linear resistance with
at intermediate temperatures due to dissipation at the array
edges for a particular geometry and vanishes for other geometries. Extensive
dynamical simulations are performed which support the qualitative physical
arguments.Comment: 8 pages with figs, RevTeX, to appear in Phys. Rev.
Teaching of Energy Issues: A debate proposal for a GLobal Reorientation
The growing awareness of serious difficulties in the learning of energy issues has produced a great deal of research, most of which is focused on specific conceptual aspects. In our opinion, the difficulties pointed out in the literature are interrelated and connected to other aspects (conceptual as well as procedural and axiological), which are not sufficiently taken into account in previous research. This paper aims to carry out a global analysis in order to avoid the more limited approaches that deal only with individual aspects. From this global analysis we have outlined 24 propositions that are put forward for debate to lay the foundations for a profound reorientation of the teaching of energy topics in upper high school courses, in order to facilitate a better scientific understanding of these topics, avoid many students' misconceptions and enhance awareness of the current situation of planetary emergency
Targeted gene expression profiling predicts meningioma outcomes and radiotherapy responses
Surgery is the mainstay of treatment for meningioma, the most common primary intracranial tumor, but improvements in meningioma risk stratification are needed and indications for postoperative radiotherapy are controversial. Here we develop a targeted gene expression biomarker that predicts meningioma outcomes and radiotherapy responses. Using a discovery cohort of 173 meningiomas, we developed a 34-gene expression risk score and performed clinical and analytical validation of this biomarker on independent meningiomas from 12 institutions across 3 continents (Nâ=â1,856), including 103 meningiomas from a prospective clinical trial. The gene expression biomarker improved discrimination of outcomes compared with all other systems tested (Nâ=â9) in the clinical validation cohort for local recurrence (5-year area under the curve (AUC) 0.81) and overall survival (5-year AUC 0.80). The increase in AUC compared with the standard of care, World Health Organization 2021 grade, was 0.11 for local recurrence (95% confidence interval 0.07 to 0.17, PâPâ=â0.0001) and suggested postoperative management could be refined for 29.8% of patients. In sum, our results identify a targeted gene expression biomarker that improves discrimination of meningioma outcomes, including prediction of postoperative radiotherapy responses. MTG
Phase Behavior and Electrochemical Characterization of Blends of Perfluoropolyether, Poly(ethylene glycol), and a Lithium Salt
International audienceElectrolytes consisting of low molecular weight perfluoropolyether (PFPE), poly(ethylene glycol) (PEG), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) blends were prepared and systematically studied for salt concentration and stoichiometry effects on the materialsâ thermal and electrochemical properties. Herein we report that the tunable ratios of PFPE and PEG allow for precise control of crystalline melting and glass transition temperature properties. These blended liquid polymer electrolytes are inherently nonflammable and remain stable in the amorphous phase from approximately 150 °C down to â85 °C. The ionic conductivity of the electrolytes are on the order of 10â4 S/cm at 30 °C, which makes them suitable for rechargeable lithium batteries