10 research outputs found

    Mechanistic insights into the effect of nanoparticles on zebrafish hatch

    No full text
    Aquatic organisms are susceptible to waterborne nanoparticles (NP) and there is only limited understanding of the mechanisms by which these emerging contaminants may affect biological processes. This study used silicon (nSi), cadmium selenide (nCdSe), silver (nAg) and zinc NPs (nZnO) as well as single-walled carbon nanotubes (SWCNT) to assess NP effects on zebrafish (Danio rerio) hatch. Exposure of 10 mg/L nAg and nCdSe delayed zebrafish hatch and 100 mg/L of nCdSe as well as 10 and 100 mg/L of uncoated nZnO completely inhibited hatch and the embryos died within the chorion. Both the morphology and the movement of the embryos were not affected, and it was determined that the main mechanism of hatch inhibition by NPs is likely through the interaction of NPs with the zebrafish hatching enzyme. Furthermore, it was concluded that the observed effects arose from the NPs themselves and not their dissolved metal components. \ua9 2014 Informa UK, Ltd.Peer reviewed: YesNRC publication: Ye

    Emerging threats and persistent conservation challenges for freshwater biodiversity

    No full text
    In the 12 years since Dudgeon et al. (2006) reviewed major pressures on freshwater ecosystems, the biodiversity crisis in the world's lakes, reservoirs, rivers, streams and wetlands has deepened. While lakes, reservoirs and rivers cover only 2.3% of the Earth's surface, these ecosystems host at least 9.5% of the Earth's described animal species. Furthermore, using the World Wide Fund for Nature's Livin

    Nonlinear Interactions of Light and Matter with Absorption

    No full text
    corecore