370 research outputs found
The influence of fear of falling on the control of upright stance across the lifespan
Background Standing at height, and subsequent changes in emotional state (e.g., fear of falling), lead to robust alterations in balance in adults. However, little is known about how height-induced postural threat affects balance performance in children. Children may lack the cognitive capability necessary to inhibit the processing of threatand fear-related stimuli, and as a result, may show more marked (and perhaps detrimental) changes in postural control compared to adults. This work explored the emotional and balance responses to standing at height in children and compared responses to young and older adults. Methods Children (age: 9.7 ± 0.8 years, n=38), young adults (age: 21.8 ± 4.0 years, n=45) and older adults (age: 73.3 ± 5.0 years, n=15) stood in bipedal stance in two conditions: on the floor and 80cm above ground. Centre of pressure (COP) amplitude (RMS), frequency (MPF) and complexity (sample entropy) were calculated to infer postural performance and strategy. Emotional responses were quantified by assessing balance confidence, fear of falling and perceived instability. Results Young and older adults demonstrated a postural adaptation characterised by increased frequency and decreased amplitude of the COP, in conjunction with increased COP complexity (sample entropy). In contrast, children demonstrated opposite patterns of changes: they exhibited an increase in COP amplitude and decrease in both frequency and complexity when standing in a hazardous situation. Significance Children and adults adopted different postural control strategies when standing at height. Whilst young and older adults exhibited a (potentially protective) “stiffening” response to a height-induced threat, children demonstrated a (potentially maladaptive) ineffective postural adaptation strategy. These observations expand upon existing postural threat related research in adults, providing important new insight into understanding how children respond to standing in a hazardous situation
Developing a smartphone app to enhance Oxfam's supply chain visibility
This paper reports on the development of a smartphone app designed to give drivers and managers in a charity organisation greater visibility of transport, donation bank and shop stock in time and space. Trials of the app with samples of drivers and shop managers across three counties in the UK showed that users’ understanding of vehicle activity and how time was utilised in the business was enhanced. The app also informed their decision making, aided some collaboration and helped in their understanding of donation bank and shop performance, with one region altering their collection schedules. The quality of 3G signal was an issue in certain areas which impeded performance and the rules by which the messaging platform should be used in such a tool need careful consideratio
Short Gamma Ray Bursts as possible electromagnetic counterpart of coalescing binary systems
Coalescing binary systems, consisting of two collapsed objects, are among the
most promising sources of high frequency gravitational waves signals
detectable, in principle, by ground-based interferometers. Binary systems of
Neutron Star or Black Hole/Neutron Star mergers should also give rise to short
Gamma Ray Bursts, a subclass of Gamma Ray Bursts. Short-hard-Gamma Ray Bursts
might thus provide a powerful way to infer the merger rate of two-collapsed
object binaries. Under the hypothesis that most short Gamma Ray Bursts
originate from binaries of Neutron Star or Black Hole/Neutron Star mergers, we
outline here the possibility to associate short Gamma Ray Bursts as
electromagnetic counterpart of coalescing binary systems.Comment: 4 pages, 1 figur
Improved perturbation theory in the vortex liquids state of type II superconductors
We develop an optimized perturbation theory for the Ginzburg - Landau
description of thermal fluctuations effects in the vortex liquids. Unlike the
high temperature expansion which is asymptotic, the optimized expansion is
convergent. Radius of convergence on the lowest Landau level is in
2D and in 3D. It allows a systematic calculation of magnetization
and specific heat contributions due to thermal fluctuations of vortices in
strongly type II superconductors to a very high precision. The results are in
good agreement with existing Monte Carlo simulations and experiments.
Limitations of various nonperturbative and phenomenological approaches are
noted. In particular we show that there is no exact intersection point of the
magnetization curves both in 2D and 3D.Comment: 24 pages, 9 figure
Climate resilience in marine protected areas and the ‘Protection Paradox’
Restricting human activities through Marine Protected Areas (MPAs) is assumed to create more resilient biological communities with a greater capacity to resist and recover following climate events. Here we review the evidence linking protection from local pressures (e.g., fishing and habitat destruction) with increased resilience. Despite strong theoretical underpinnings, studies have only rarely attributed resilience responses to the recovery of food webs and habitats, and increases in the diversity of communities and populations. When detected, resistance to ocean warming and recovery after extreme events in MPAs have small effect sizes against a backdrop of natural variability. By contrast, large die-offs are well described from MPAs following climate stress events. This may be in part because protection from one set of pressures or drivers (such as fishing) can select for species that are highly sensitive to others (such as warming), creating a ‘Protection Paradox’. Given that climate change is overwhelming the resilience capacity of marine ecosystems, the only primary solution is to reduce carbon emissions. High-quality monitoring data in both space and time can also identify emergent resilience signals that do exist, in combination with adequate reference data to quantify the initial system state. This knowledge will allow networks of diverse protected areas to incorporate spatial refugia against climate change, and identify resilient biological components of natural systems. Sufficient spatial replication further offers insurance against losses in any given MPA, and the possibility for many weak signals of resilience to accumulate
Mutations in MAP3K7 that Alter the Activity of the TAK1 Signaling Complex Cause Frontometaphyseal Dysplasia.
Frontometaphyseal dysplasia (FMD) is a progressive sclerosing skeletal dysplasia affecting the long bones and skull. The cause of FMD in some individuals is gain-of-function mutations in FLNA, although how these mutations result in a hyperostotic phenotype remains unknown. Approximately one half of individuals with FMD have no identified mutation in FLNA and are phenotypically very similar to individuals with FLNA mutations, except for an increased tendency to form keloid scars. Using whole-exome sequencing and targeted Sanger sequencing in 19 FMD-affected individuals with no identifiable FLNA mutation, we identified mutations in two genes-MAP3K7, encoding transforming growth factor β (TGF-β)-activated kinase (TAK1), and TAB2, encoding TAK1-associated binding protein 2 (TAB2). Four mutations were found in MAP3K7, including one highly recurrent (n = 15) de novo mutation (c.1454C>T [ p.Pro485Leu]) proximal to the coiled-coil domain of TAK1 and three missense mutations affecting the kinase domain (c.208G>C [p.Glu70Gln], c.299T>A [p.Val100Glu], and c.502G>C [p.Gly168Arg]). Notably, the subjects with the latter three mutations had a milder FMD phenotype. An additional de novo mutation was found in TAB2 (c.1705G>A, p.Glu569Lys). The recurrent mutation does not destabilize TAK1, or impair its ability to homodimerize or bind TAB2, but it does increase TAK1 autophosphorylation and alter the activity of more than one signaling pathway regulated by the TAK1 kinase complex. These findings show that dysregulation of the TAK1 complex produces a close phenocopy of FMD caused by FLNA mutations. Furthermore, they suggest that the pathogenesis of some of the filaminopathies caused by FLNA mutations might be mediated by misregulation of signaling coordinated through the TAK1 signaling complex
Towards an understanding of neuroscience for science educators
Advances in neuroscience have brought new insights to the development of cognitive functions. These data are of considerable interest to educators concerned with how students learn. This review documents some of the recent findings in neuroscience, which is richer in describing cognitive functions than affective aspects of learning. A brief overview is presented here of the techniques used to generate data from imaging and how these findings have the possibility to inform educators. There are implications for considering the impact of neuroscience at all levels of education – from the classroom teacher and practitioner to policy. This relatively new cross-disciplinary area of research implies a need for educators and scientists to engage with each other. What questions are emerging through such dialogues between educators and scientists are likely to shed light on, for example, reward, motivation, working memory, learning difficulties, bilingualism and child development. The sciences of learning are entering a new paradigm
The Sudbury Neutrino Observatory
The Sudbury Neutrino Observatory is a second generation water Cherenkov
detector designed to determine whether the currently observed solar neutrino
deficit is a result of neutrino oscillations. The detector is unique in its use
of D2O as a detection medium, permitting it to make a solar model-independent
test of the neutrino oscillation hypothesis by comparison of the charged- and
neutral-current interaction rates. In this paper the physical properties,
construction, and preliminary operation of the Sudbury Neutrino Observatory are
described. Data and predicted operating parameters are provided whenever
possible.Comment: 58 pages, 12 figures, submitted to Nucl. Inst. Meth. Uses elsart and
epsf style files. For additional information about SNO see
http://www.sno.phy.queensu.ca . This version has some new reference
- …