3,281 research outputs found
Shifting a Quantum Wire through a Disordered Crystal: Observation of Conductance Fluctuations in Real Space
A quantum wire is spatially displaced by suitable electric fields with
respect to the scatterers inside a semiconductor crystal. As a function of the
wire position, the low-temperature resistance shows reproducible fluctuations.
Their characteristic temperature scale is a few hundred millikelvin, indicating
a phase-coherent effect. Each fluctuation corresponds to a single scatterer
entering or leaving the wire. This way, scattering centers can be counted one
by one.Comment: 4 pages, 3 figure
Nonperturbative Superpotentials and Compactification to Three Dimensions
We consider four-dimensional N=2 supersymmetric gauge theories with gauge
group U(N) on R^3 x S^1, in the presence of a classical superpotential. The
low-energy quantum superpotential is obtained by simply replacing the adjoint
scalar superfield in the classical superpotential by the Lax matrix of the
integrable system that underlies the 4d field theory. We verify in a number of
examples that the vacuum structure obtained in this way matches precisely that
in 4d, although the degrees of freedom that appear are quite distinct. Several
features of 4d field theories, such as the possibility of lifting vacua from
U(N) to U(tN), become particularly simple in this framework. It turns out that
supersymmetric vacua give rise to a reduction of the integrable system which
contains information about the field theory but also about the Dijkgraaf-Vafa
matrix model. The relation between the matrix model and the quantum
superpotential on R^3 x S^1 appears to involve a novel kind of mirror symmetry.Comment: LaTeX, 45 pages, uses AmsMath, minor correction, reference adde
Evolution of electronic and ionic structure of Mg-clusters with the growth cluster size
The optimized structure and electronic properties of neutral and singly
charged magnesium clusters have been investigated using ab initio theoretical
methods based on density-functional theory and systematic post-Hartree-Fock
many-body perturbation theory accounting for all electrons in the system. We
have systematically calculated the optimized geometries of neutral and singly
charged magnesium clusters consisting of up to 21 atoms, electronic shell
closures, binding energies per atom, ionization potentials and the gap between
the highest occupied and the lowest unoccupied molecular orbitals. We have
investigated the transition to the hcp structure and metallic evolution of the
magnesium clusters, as well as the stability of linear chains and rings of
magnesium atoms. The results obtained are compared with the available
experimental data and the results of other theoretical works.Comment: 30 pages, 10 figures, 3 table
Zero Modes and the Atiyah-Singer Index in Noncommutative Instantons
We study the bosonic and fermionic zero modes in noncommutative instanton
backgrounds based on the ADHM construction. In k instanton background in U(N)
gauge theory, we show how to explicitly construct 4Nk (2Nk) bosonic (fermionic)
zero modes in the adjoint representation and 2k (k) bosonic (fermionic) zero
modes in the fundamental representation from the ADHM construction. The number
of fermionic zero modes is also shown to be exactly equal to the Atiyah-Singer
index of the Dirac operator in the noncommutative instanton background. We
point out that (super)conformal zero modes in non-BPS instantons are affected
by the noncommutativity. The role of Lorentz symmetry breaking by the
noncommutativity is also briefly discussed to figure out the structure of U(1)
instantons.Comment: v3: 24 pages, Latex, corrected typos, references added, to appear in
Phys. Rev.
Multi-gap superconductivity in a BaFe1.84Co0.16As2 film from optical measurements at terahertz frequencies
We measured the THz reflectance properties of a high quality epitaxial thin
film of the Fe-based superconductor BaFeCoAs with
T=22.5 K. The film was grown by pulsed laser deposition on a DyScO
substrate with an epitaxial SrTiO intermediate layer. The measured
spectrum, i.e. the reflectivity ratio between the superconducting and
normal state reflectance, provides clear evidence of a superconducting gap
close to 15 cm. A detailed data analysis shows that a
two-band, two-gap model is absolutely necessary to obtain a good description of
the measured spectrum. The low-energy gap results to be
well determined (=15.50.5 cm), while the value of the
high-energy gap is more uncertain (=557 cm).
Our results provide evidence of a nodeless isotropic double-gap scenario, with
the presence of two optical gaps corresponding to 2 values close
to 2 and 7.Comment: Published Versio
N=1 G_2 SYM theory and Compactification to Three Dimensions
We study four dimensional N=2 G_2 supersymmetric gauge theory on R^3\times
S^1 deformed by a tree level superpotential. We will show that the exact
superpotential can be obtained by making use of the Lax matrix of the
corresponding integrable model which is the periodic Toda lattice based on the
dual of the affine G_2 Lie algebra. At extrema of the superpotential the
Seiberg-Witten curve typically factorizes, and we study the algebraic equations
underlying this factorization. For U(N) theories the factorization was closely
related to the geometrical engineering of such gauge theories and to matrix
model descriptions, but here we will find that the geometrical interpretation
is more mysterious. Along the way we give a method to compute the gauge theory
resolvent and a suitable set of one-forms on the Seiberg-Witten curve. We will
also find evidence that the low-energy dynamics of G_2 gauge theories can
effectively be described in terms of an auxiliary hyperelliptic curve.Comment: 27 pages, late
A Note on Domain Walls and the Parameter Space of N=1 Gauge Theories
We study the spectrum of BPS domain walls within the parameter space of N=1
U(N) gauge theories with adjoint matter and a cubic superpotential. Using a low
energy description obtained by compactifying the theory on R^3 x S^1, we
examine the wall spectrum by combining direct calculations at special points in
the parameter space with insight drawn from the leading order potential between
minimal walls, i.e those interpolating between adjacent vacua. We show that the
multiplicity of composite BPS walls -- as characterised by the CFIV index --
exhibits discontinuities on marginal stability curves within the parameter
space of the maximally confining branch. The structure of these marginal
stability curves for large N appears tied to certain singularities within the
matrix model description of the confining vacua.Comment: 33 pages, LaTeX, 6 eps figures; v2: references adde
Superconducting zero temperature phase transition in two dimensions and in the magnetic field
We derive the Ginzburg-Landau-Wilson theory for the superconducting phase
transition in two dimensions and in the magnetic field. Without disorder the
theory describes a fluctuation induced first-order quantum phase transition
into the Abrikosov lattice. We propose a phenomenological criterion for
determining the transition field and discuss the qualitative effects of
disorder. Comparison with recent experiments on MoGe films is discussed.Comment: 7 pages, 2 figure
SRAO CO Observation of 11 Supernova Remnants in l = 70 to 190 deg
We present the results of 12CO J = 1-0 line observations of eleven Galactic
supernova remnants (SNRs) obtained using the Seoul Radio Astronomy Observatory
(SRAO) 6-m radio telescope. The observation was made as a part of the SRAO CO
survey of SNRs between l = 70 and 190 deg, which is intended to identify SNRs
interacting with molecular clouds. The mapping areas for the individual SNRs
are determined to cover their full extent in the radio continuum. We used
halfbeam grid spacing (60") for 9 SNRs and full-beam grid spacing (120") for
the rest. We detected CO emission towards most of the remnants. In six SNRs,
molecular clouds showed a good spatial relation with their radio morphology,
although no direct evidence for the interaction was detected. Two SNRs are
particularly interesting: G85.4+0.7, where there is a filamentary molecular
cloud along the radio shell, and 3C434.1, where a large molecular cloud appears
to block the western half of the remnant. We briefly summarize the results
obtained for individual SNRs.Comment: Accepted for publication in Astrophysics & Space Science. 12 pages,
12 figures, and 3 table
- …